Hide metadata

dc.date.accessioned2021-01-31T20:19:22Z
dc.date.available2021-01-31T20:19:22Z
dc.date.created2021-01-08T22:50:49Z
dc.date.issued2021
dc.identifier.citationPogosbekian, Eduard Pronin, Igor N Zakharova, Natalia Batalov, A.I. Turkin, A.M. Konakova, T.A. Maximov, Ivan . Feasibility of generalised diffusion kurtosis imaging approach for brain glioma grading. Neuroradiology. 2021
dc.identifier.urihttp://hdl.handle.net/10852/82782
dc.description.abstractPurpose An accurate differentiation of brain glioma grade constitutes an important clinical issue. Powerful non-invasive approach based on diffusion MRI has already demonstrated its feasibility in glioma grade stratification. However, the conventional diffusion tensor (DTI) and kurtosis imaging (DKI) demonstrated moderate sensitivity and performance in glioma grading. In the present work, we apply generalised DKI (gDKI) approach in order to assess its diagnostic accuracy and potential application in glioma grading. Methods Diffusion scalar metrics were obtained from 50 patients with different glioma grades confirmed by histological tests following biopsy or surgery. All patients were divided into two groups with low- and high-grade gliomas as grade II versus grades III and IV, respectively. For a comparison, trained radiologists segmented the brain tissue into three regions with solid tumour, oedema, and normal appearing white matter. For each region, we estimated the conventional and gDKI metrics including DTI maps. Results We found high correlations between DKI and gDKI metrics in high-grade glioma. Further, gDKI metrics enabled introduction of a complementary measure for glioma differentiation based on correlations between the conventional and generalised approaches. Both conventional and generalised DKI metrics showed quantitative maps of tumour heterogeneity and oedema behaviour. gDKI approach demonstrated largely similar sensitivity and specificity in low-high glioma differentiation as in the case of conventional DKI method. Conclusion The generalised diffusion kurtosis imaging enables differentiation of low- and high-grade gliomas at the same level as the conventional DKI. Additionally, gDKI exhibited higher sensitivity to tumour heterogeneity and tissue contrast between tumour and healthy tissue and, thus, may contribute as a complementary source of information on tumour differentiation.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.titleFeasibility of generalised diffusion kurtosis imaging approach for brain glioma grading
dc.typeJournal article
dc.creator.authorPogosbekian, Eduard
dc.creator.authorPronin, Igor N
dc.creator.authorZakharova, Natalia
dc.creator.authorBatalov, A.I.
dc.creator.authorTurkin, A.M.
dc.creator.authorKonakova, T.A.
dc.creator.authorMaximov, Ivan
cristin.unitcode185,17,5,0
cristin.unitnamePsykologisk institutt
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1868117
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Neuroradiology&rft.volume=&rft.spage=&rft.date=2021
dc.identifier.jtitleNeuroradiology
dc.identifier.doihttps://doi.org/10.1007/s00234-020-02613-7
dc.identifier.urnURN:NBN:no-85604
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0028-3940
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/82782/2/Pogosbekian.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/249795


Files in this item

Appears in the following Collection

Hide metadata