Hide metadata

dc.date.accessioned2021-01-31T20:09:18Z
dc.date.available2021-01-31T20:09:18Z
dc.date.created2020-10-06T13:54:18Z
dc.date.issued2020
dc.identifier.citationZhang, Qing-He Zhang, Yong-Liang Wang, Chi Lockwood, Michael Yang, Hui-Gen Tang, Bin-Bin Xing, Zan-Yang Oksavik, Kjellmar Lyons, Larry R. Ma, Yu-Zhang Zong, Qiu-Gang Moen, Jøran Idar Xia, Li-Dong . Multiple transpolar auroral arcs reveal insight about coupling processes in the Earth’s magnetotail. Proceedings of the National Academy of Sciences of the United States of America. 2020, 117(28), 16193-16198
dc.identifier.urihttp://hdl.handle.net/10852/82777
dc.description.abstractA distinct class of aurora, called transpolar auroral arc (TPA) (in some cases called “theta” aurora), appears in the extremely high-latitude ionosphere of the Earth when interplanetary magnetic field (IMF) is northward. The formation and evolution of TPA offers clues about processes transferring energy and momentum from the solar wind to the magnetosphere and ionosphere during a northward IMF. However, their formation mechanisms remain poorly understood and controversial. We report a mechanism identified from multiple-instrument observations of unusually bright, multiple TPAs and simulations from a high-resolution three-dimensional (3D) global MagnetoHydroDynamics (MHD) model. The observations and simulations show an excellent agreement and reveal that these multiple TPAs are generated by precipitating energetic magnetospheric electrons within field-aligned current (FAC) sheets. These FAC sheets are generated by multiple-flow shear sheets in both the magnetospheric boundary produced by Kelvin–Helmholtz instability between supersonic solar wind flow and magnetosphere plasma, and the plasma sheet generated by the interactions between the enhanced earthward plasma flows from the distant tail (less than −100 R E ) and the enhanced tailward flows from the near tail (about −20 R E ). The study offers insight into the complex solar wind-magnetosphere-ionosphere coupling processes under a northward IMF condition, and it challenges existing paradigms of the dynamics of the Earth’s magnetosphere.
dc.languageEN
dc.publisherThe National Academy of Sciences
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleMultiple transpolar auroral arcs reveal insight about coupling processes in the Earth’s magnetotail
dc.typeJournal article
dc.creator.authorZhang, Qing-He
dc.creator.authorZhang, Yong-Liang
dc.creator.authorWang, Chi
dc.creator.authorLockwood, Michael
dc.creator.authorYang, Hui-Gen
dc.creator.authorTang, Bin-Bin
dc.creator.authorXing, Zan-Yang
dc.creator.authorOksavik, Kjellmar
dc.creator.authorLyons, Larry R.
dc.creator.authorMa, Yu-Zhang
dc.creator.authorZong, Qiu-Gang
dc.creator.authorMoen, Jøran Idar
dc.creator.authorXia, Li-Dong
cristin.unitcode185,15,4,70
cristin.unitnamePlasma- og romfysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1837620
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Proceedings of the National Academy of Sciences of the United States of America&rft.volume=117&rft.spage=16193&rft.date=2020
dc.identifier.jtitleProceedings of the National Academy of Sciences of the United States of America
dc.identifier.volume117
dc.identifier.issue28
dc.identifier.startpage16193
dc.identifier.endpage16198
dc.identifier.doihttps://doi.org/10.1073/pnas.2000614117
dc.identifier.urnURN:NBN:no-85607
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0027-8424
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/82777/2/Zhang_PNAS_16193.full.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/223252


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International