Hide metadata

dc.date.accessioned2021-01-13T20:36:50Z
dc.date.available2021-01-13T20:36:50Z
dc.date.created2021-01-07T21:06:54Z
dc.date.issued2020
dc.identifier.citationMikheenko, Pavlo . Nano superconductivity and quantum processing of information in living organisms. 2020 IEEE 10th International Conference on “Nanomaterials: Applications & Properties” (NAP – 2020). 2020, 02SNS02-1-02SNS02-4 IEEE
dc.identifier.urihttp://hdl.handle.net/10852/82193
dc.description.abstractWith the advance of superconducting quantum computing and the attempts of extending its operating range to higher temperatures, a special attention is paid to nanostructured quantum circuits. In particular, quasi one-dimensional quantum wires with phase slip centers are argued to be promising structures for the next generation of quantum computers. In its turn, this stimulates revisiting the question about the possibility of quantum processing of information in quasi one-dimensional structures in the nervous system, specifically the brain, in living organisms, especially in the light of recent findings that suggest robust room-temperature superconductivity in these structures. The early theories of superconductivity were in favor of its quasi one-dimensional nature, and the recent findings suggest that reducing dimensions of a system could be a good approach for increasing the critical temperature of a material. Here, based on experimental data, it is argued that both room-temperature superconductivity and quantum processing of information are possible in the microtubules that are abundant in the nervous system and form the scaffolding of every cell in advanced living organisms. The origin of superconductivity in microtubules, and the way in which quantum processing of information may take place in them, are discussed. The role of Josephson oscillations in processing and exchange of information is emphasized.
dc.languageEN
dc.publisherIEEE
dc.titleNano superconductivity and quantum processing of information in living organisms
dc.typeChapter
dc.creator.authorMikheenko, Pavlo
cristin.unitcode185,15,4,10
cristin.unitnameKondenserte fasers fysikk
cristin.ispublishedtrue
cristin.fulltextpreprint
dc.identifier.cristin1867407
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.btitle=2020 IEEE 10th International Conference on “Nanomaterials: Applications & Properties” (NAP – 2020)&rft.spage=02SNS02-1&rft.date=2020
dc.identifier.startpage02SNS02-1
dc.identifier.endpage02SNS02-4
dc.identifier.pagecount572
dc.identifier.doihttp://dx.doi.org/10.1109/NAP51477.2020.9309703
dc.identifier.urnURN:NBN:no-85103
dc.type.documentBokkapittel
dc.source.isbn978-1-7281-8506-4
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/82193/1/NAP2020%2BMikheenko.pdf
dc.type.versionSubmittedVersion
cristin.btitle2020 IEEE 10th International Conference on “Nanomaterials: Applications & Properties” (NAP – 2020)


Files in this item

Appears in the following Collection

Hide metadata