Hide metadata

dc.date.accessioned2020-12-22T19:32:30Z
dc.date.available2020-12-22T19:32:30Z
dc.date.created2020-09-18T12:21:28Z
dc.date.issued2020
dc.identifier.citationGutterød, Emil Sebastian Pulumati, S.H. Kaur, Gurpreet Lazzarini, Andrea Solemsli, B. G. Gunnæs, Anette Eleonora Ahoba-Sam, Christian Kalyva, Maria Evangelou Sannes, Johnny Andreas Svelle, Stian Skúlason, Egill Nova, Ainara Olsbye, Unni . Influence of Defects and H2O on the Hydrogenation of CO2 to Methanol over Pt Nanoparticles in UiO-67 Metal-Organic Framework. Journal of the American Chemical Society. 2020, 142(40), 17105-17118
dc.identifier.urihttp://hdl.handle.net/10852/81821
dc.description.abstractIn catalysts for CO2 hydrogenation, the interface between metal nanoparticles (NPs) and the support material is of high importance for the activity and reaction selectivity. In Pt NP-containing UiO Zr-metal–organic frameworks (MOFs), key intermediates in methanol formation are adsorbed at open Zr-sites at the Pt–MOF interface. In this study, we investigate the dynamic role of the Zr-node and the influence of H2O on the CO2 hydrogenation reaction at 170 °C, through steady state and transient isotope exchange experiments, H2O cofeed measurements, and density functional theory (DFT) calculations. The study revealed that an increased number of Zr-node defects increase the formation rates to both methanol and methane. Transient experiments linked the increase to a higher number of surface intermediates for both products. Experiments involving either dehydrated or prehydrated Zr-nodes showed higher methanol and methane formation rates over the dehydrated Zr-node. Transient experiments suggested that the difference is related to competitive adsorption between methanol and water. DFT calculations and microkinetic modeling support this conclusion and give further insight into the equilibria involved in the competitive adsorption process. The calculations revealed weaker adsorption of methanol in defective or dehydrated nodes, in agreement with the larger gas phase concentration of methanol observed experimentally. The microkinetic model shows that [Zr2(μ-O)2]4+ and [Zr2(μ–OH)(μ-O)(OH)(H2O)]4+ are the main surface species when the concentration of water is lower than the number of defect sites. Lastly, although addition of water was found to promote methanol desorption, water does not change the methanol steady state reaction rate, while it has a substantial inhibiting effect on CH4 formation. These results indicate that water can be used to increase the reaction selectivity to methanol and encourages further detailed investigations of the catalyst system.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleInfluence of Defects and H2O on the Hydrogenation of CO2 to Methanol over Pt Nanoparticles in UiO-67 Metal-Organic Framework
dc.typeJournal article
dc.creator.authorGutterød, Emil Sebastian
dc.creator.authorPulumati, S.H.
dc.creator.authorKaur, Gurpreet
dc.creator.authorLazzarini, Andrea
dc.creator.authorSolemsli, B. G.
dc.creator.authorGunnæs, Anette Eleonora
dc.creator.authorAhoba-Sam, Christian
dc.creator.authorKalyva, Maria Evangelou
dc.creator.authorSannes, Johnny Andreas
dc.creator.authorSvelle, Stian
dc.creator.authorSkúlason, Egill
dc.creator.authorNova, Ainara
dc.creator.authorOlsbye, Unni
cristin.unitcode185,15,17,0
cristin.unitnameSenter for materialvitenskap og nanoteknologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1831154
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of the American Chemical Society&rft.volume=142&rft.spage=17105&rft.date=2020
dc.identifier.jtitleJournal of the American Chemical Society
dc.identifier.volume142
dc.identifier.issue40
dc.identifier.startpage17105
dc.identifier.endpage17118
dc.identifier.doihttps://doi.org/10.1021/jacs.0c07153
dc.identifier.urnURN:NBN:no-84865
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0002-7863
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/81821/2/Gutter%25C3%25B8d_2020.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/250044
dc.relation.projectNFR/262695
dc.relation.projectNORDFORSK/85378
dc.relation.projectNORTEM/197405/F50
dc.relation.projectNFR/250795


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International