Hide metadata

dc.date.accessioned2020-12-22T19:22:28Z
dc.date.available2020-12-22T19:22:28Z
dc.date.created2020-12-19T12:18:13Z
dc.date.issued2020
dc.identifier.citationPedersen, Thomas Bondo Kristiansen, Håkon Emil Bodenstein, Tilmann Kvaal, Simen Schøyen, Øyvind Sigmundson . Interpretation of Coupled-Cluster Many-Electron Dynamics in Terms of Stationary States. Journal of Chemical Theory and Computation. 2020
dc.identifier.urihttp://hdl.handle.net/10852/81816
dc.description.abstractWe demonstrate theoretically and numerically that laser-driven many-electron dynamics, as described by bivariational time-dependent coupled-cluster theory, may be analyzed in terms of stationary-state populations. Projectors heuristically defined from linear response theory and equation-of-motion coupled cluster theory are proposed for the calculation of stationary-state populations during interaction with laser pulses or other external forces, and conservation laws of the populations are discussed. Numerical tests of the proposed projectors, involving both linear and nonlinear optical processes for the He and Be atoms, and for the LiH, CH+, and LiF molecules, show that the laser-driven evolution of the stationary-state populations at the coupled-cluster singles-and-doubles (CCSD) level is very close to that obtained by ful configuration-interaction theory provided all stationary states actively participating in the dynamics are sufficiently well approximated. When double-excited states are important for the dynamics, the quality of the CCSD results deteriorate. Observing that populations computed from the linear-response projector may show spurious small-amplitude, high-frequency oscillations, the equation-of-motion projector emerges as the most promising approach to stationary-state populations.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleInterpretation of Coupled-Cluster Many-Electron Dynamics in Terms of Stationary States
dc.typeJournal article
dc.creator.authorPedersen, Thomas Bondo
dc.creator.authorKristiansen, Håkon Emil
dc.creator.authorBodenstein, Tilmann
dc.creator.authorKvaal, Simen
dc.creator.authorSchøyen, Øyvind Sigmundson
cristin.unitcode185,15,12,59
cristin.unitnameTeoretisk kjemi
cristin.ispublishedfalse
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.cristin1861868
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Chemical Theory and Computation&rft.volume=&rft.spage=&rft.date=2020
dc.identifier.jtitleJournal of Chemical Theory and Computation
dc.identifier.doihttps://doi.org/10.1021/acs.jctc.0c00977
dc.identifier.urnURN:NBN:no-84835
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1549-9618
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/81816/5/acs.jctc.0c00977.pdf
dc.type.versionPublishedVersion
cristin.articleidacs.jctc.0c00977
dc.relation.projectEC/FP7/ERC-StG-2014 639508
dc.relation.projectNOTUR/NORSTORE/NN4654K
dc.relation.projectNFR/262695
dc.relation.projectNFR/240698


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International