Hide metadata

dc.date.accessioned2020-12-21T20:26:00Z
dc.date.available2020-12-21T20:26:00Z
dc.date.created2020-12-17T13:47:46Z
dc.date.issued2020
dc.identifier.citationBathen, Marianne Etzelmüller Vines, Lasse Coutinho, José . First-principles calculations of Stark shifts of electronic transitions for defects in semiconductors: the Si vacancy in 4H-SiC. Journal of Physics: Condensed Matter. 2020, 33(7)
dc.identifier.urihttp://hdl.handle.net/10852/81787
dc.description.abstractPoint defects in solids are promising single-photon sources with application in quantum sensing, computing and communication. Herein, we describe a theoretical framework for studying electric field effects on defect-related electronic transitions, based on density functional theory calculations with periodic boundary conditions. Sawtooth-shaped electric fields are applied perpendicular to the surface of a two-dimensional defective slab, with induced charge singularities being placed in the vacuum layer. The silicon vacancy (VSi) in 4H-SiC is employed as a benchmark system, having three zero-phonon lines in the near-infrared (V1, V1' and V2) and exhibiting Stark tunability via fabrication of Schottky barrier or p-i-n diodes. In agreement with experimental observations, we find an approximately linear field response for the zero-phonon transitions of VSi involving the decay from the first excited state (named V1 and V2). However, the magnitude of the Stark shifts are overestimated by nearly a factor of 10 when comparing to experimental findings. We discuss several theoretical and experimental aspects which could affect the agreement.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleFirst-principles calculations of Stark shifts of electronic transitions for defects in semiconductors: the Si vacancy in 4H-SiC
dc.typeJournal article
dc.creator.authorBathen, Marianne Etzelmüller
dc.creator.authorVines, Lasse
dc.creator.authorCoutinho, José
cristin.unitcode185,15,4,90
cristin.unitnameHalvlederfysikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.cristin1861099
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Physics: Condensed Matter&rft.volume=33&rft.spage=&rft.date=2020
dc.identifier.jtitleJournal of Physics: Condensed Matter
dc.identifier.volume33
dc.identifier.issue7
dc.identifier.doihttps://doi.org/10.1088/1361-648X/abc804
dc.identifier.urnURN:NBN:no-84808
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0953-8984
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/81787/5/Bathen_2020_J._Phys.+_Condens._Matter_33_075502.pdf
dc.type.versionPublishedVersion
cristin.articleid075502
dc.relation.projectNFR/251131
dc.relation.projectNFR/245963


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International