Hide metadata

dc.date.accessioned2020-12-21T19:56:50Z
dc.date.available2020-12-21T19:56:50Z
dc.date.created2020-11-23T11:00:00Z
dc.date.issued2020
dc.identifier.citationLai, Samson Yuxiu Mæhlen, Jan Petter Preston, Thomas Skare, Marte Orderud Nagell, Marius Uv Ulvestad, Asbjørn Lemordant, Daniel Koposov, Alexey . Morphology engineering of silicon nanoparticles for better performance in Li-ion battery anodes. Nanoscale Advances. 2020, 11(2), 5335-5342
dc.identifier.urihttp://hdl.handle.net/10852/81774
dc.description.abstractAmorphous silicon nanoparticles were synthesized through pyrolysis of silane gas at temperatures ranging from 575 to 675 °C. According to the used temperature and silane concentration, two distinct types of particles can be obtained: at 625 °C, spherical particles with smooth surface and a low degree of aggregation, but at a higher temperature (650 °C) and lower silane concentration, particles with extremely rough surfaces and high degree of aggregation are found. This demonstrates the importance of the synthesis temperature on the morphology of silicon particles. The two types of silicon nanoparticles were subsequently used as active materials in a lithium half cell configuration, using LiPF6 in an alkylcarbonate-based electrolyte, in order to investigate the impact of the particles morphology on the cycling performances of silicon anode material. The difference in morphology of the particles resulted in different volume expansions, which impacts the solid electrolyte interface (SEI) formation and, as a consequence, the lifetime of the electrode. Half-cells fabricated from spherical particles demonstrated almost 70% capacity retention for over 300 cycles, while the cells made from the rough, aggregated particles showed a sharp decrease in capacity after the 20th cycle. The cycling results underline the importance of Si particle engineering and its influence on the lifetime of Si-based materials.
dc.languageEN
dc.rightsAttribution 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.titleMorphology engineering of silicon nanoparticles for better performance in Li-ion battery anodes
dc.typeJournal article
dc.creator.authorLai, Samson Yuxiu
dc.creator.authorMæhlen, Jan Petter
dc.creator.authorPreston, Thomas
dc.creator.authorSkare, Marte Orderud
dc.creator.authorNagell, Marius Uv
dc.creator.authorUlvestad, Asbjørn
dc.creator.authorLemordant, Daniel
dc.creator.authorKoposov, Alexey
cristin.unitcode185,15,12,60
cristin.unitnameUorganisk materialkjemi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1850939
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nanoscale Advances&rft.volume=11&rft.spage=5335&rft.date=2020
dc.identifier.jtitleNanoscale Advances
dc.identifier.volume2
dc.identifier.issue11
dc.identifier.startpage5335
dc.identifier.endpage5342
dc.identifier.doihttps://doi.org/10.1039/D0NA00770F
dc.identifier.urnURN:NBN:no-84807
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2516-0230
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/81774/1/Lai_et_al_2020_NanoscaleAdv..pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/257653
dc.relation.projectNFR/255116
dc.relation.projectNFR/280985


Files in this item

Appears in the following Collection

Hide metadata

Attribution 3.0 Unported
This item's license is: Attribution 3.0 Unported