Hide metadata

dc.date.accessioned2020-12-17T20:10:49Z
dc.date.available2020-12-17T20:10:49Z
dc.date.created2020-11-30T09:45:41Z
dc.date.issued2020
dc.identifier.citationReinertsen, Vilde Mari Weiser, Philip Michael Frodason, Ymir Kalmann Bathen, Marianne Etzelmüller Vines, Lasse Johansen, Klaus Magnus H . Anisotropic and trap-limited diffusion of hydrogen/deuterium in monoclinic gallium oxide single crystals. Applied Physics Letters. 2020
dc.identifier.urihttp://hdl.handle.net/10852/81683
dc.description.abstractThe effect of lattice anisotropy on the diffusion of hydrogen (H)/deuterium (2H) in β-Ga2O3 was investigated using secondary ion mass spectrometry (SIMS) and hybrid-functional calculations. Concentration-depth profiles of 2H-implanted single crystals show that 2H can diffuse along the direction perpendicular to the (010) surface at temperatures as low as 300 °C, whereas diffusion along the direction perpendicular to the (-201) surface occurs only around 500 °C. For both directions, the evolution of the 2H concentration–depth profiles after heat treatments can be modeled by trap-limited diffusion. Moreover, the traps can be present in the as-received crystals or created during ion implantation. Comparison of the experimentally obtained binding energy for 2H to the trap (2.3 ± 0.2 eV) with the binding energies determined from first-principles calculations suggests that intrinsic point defects (e.g., VibGa) or defect complexes (e.g., VGa(2)VO(2)) are excellent candidates for the trap and will play a crucial role in the diffusion of H or 2H in β-Ga2O3.
dc.languageEN
dc.titleAnisotropic and trap-limited diffusion of hydrogen/deuterium in monoclinic gallium oxide single crystals
dc.typeJournal article
dc.creator.authorReinertsen, Vilde Mari
dc.creator.authorWeiser, Philip Michael
dc.creator.authorFrodason, Ymir Kalmann
dc.creator.authorBathen, Marianne Etzelmüller
dc.creator.authorVines, Lasse
dc.creator.authorJohansen, Klaus Magnus H
cristin.unitcode185,15,4,40
cristin.unitnameStrukturfysikk
cristin.ispublishedfalse
cristin.fulltextpostprint
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1853932
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Applied Physics Letters&rft.volume=&rft.spage=&rft.date=2020
dc.identifier.jtitleApplied Physics Letters
dc.identifier.volume117
dc.identifier.issue23
dc.identifier.doihttps://doi.org/10.1063/5.0027333
dc.identifier.urnURN:NBN:no-84746
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0003-6951
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/81683/2/APL20-AR-UBS2021-07610_AM.pdf
dc.type.versionAcceptedVersion
cristin.articleid232106
dc.relation.projectNFR/251131
dc.relation.projectNFR/257639
dc.relation.projectNFR/245963


Files in this item

Appears in the following Collection

Hide metadata