Hide metadata

dc.date.accessioned2020-11-06T18:54:06Z
dc.date.available2020-11-06T18:54:06Z
dc.date.created2020-10-13T12:56:37Z
dc.date.issued2020
dc.identifier.citationJoki, Reidar Kvale Grytten, Frode Hayman, Brian Sørensen, Bent Fruergaard . A mixed mode cohesive model for FRP laminates incorporating large scale bridging behaviour. Engineering Fracture Mechanics. 2020, 239, 1-15
dc.identifier.urihttp://hdl.handle.net/10852/80880
dc.description.abstractA user defined cohesive material model is implemented in the LS-DYNA finite element code. The model is based on interface properties characterised from DCB specimens loaded with unequal bending moments. Different mode mixities are obtained by applying different ratios of moments to the two beams in the cracked part of the specimen. The mixed mode cohesive law is fitted for large scale bridging delamination through inverse modelling. In this way, the variations in stress and crack opening across the width of the specimen are taken into account. The J integral approach is used to find a starting point for the fitting procedure. Three properties from five moment configurations are evaluated to find a first estimate of the shape of the cohesive law: crack tip fracture energy, steady-state fracture resistance and crack end-opening at steady-state fracture resistance. The parameters of the cohesive law are then further adjusted using the optimisation tool LS-OPT. The implemented cohesive model is assessed by comparing numerical to experimental test results from the standardised ASTM double cantilever beam test and the ASTM mixed mode bending test.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleA mixed mode cohesive model for FRP laminates incorporating large scale bridging behaviour
dc.typeJournal article
dc.creator.authorJoki, Reidar Kvale
dc.creator.authorGrytten, Frode
dc.creator.authorHayman, Brian
dc.creator.authorSørensen, Bent Fruergaard
cristin.unitcode185,15,13,0
cristin.unitnameMatematisk institutt
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1839187
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Engineering Fracture Mechanics&rft.volume=239&rft.spage=1&rft.date=2020
dc.identifier.jtitleEngineering Fracture Mechanics
dc.identifier.volume239
dc.identifier.doihttps://doi.org/10.1016/j.engfracmech.2020.107274
dc.identifier.urnURN:NBN:no-83964
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0013-7944
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/80880/1/Joki%2Bet.al%2B2020.pdf
dc.type.versionPublishedVersion
cristin.articleid107274
dc.relation.projectEC/H2020/761072
dc.relation.projectNFR/193238


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International