Hide metadata

dc.date.accessioned2020-10-15T19:24:01Z
dc.date.available2020-10-15T19:24:01Z
dc.date.created2020-07-07T14:29:39Z
dc.date.issued2020
dc.identifier.citationChavez Panduro, Elvia Anabela Cordonnier, Benoit Gawel, Kamila Børve, Ingrid Iyer, Jaisree Carroll, Susan Michels Brito Miranda, Leander Edward Rogowska, Melania McBeck, Jessica Ann Sørensen, Henning Osholm Walsh, Stuart D.C. Renard, Francois Gibaud, Alain Torsæter, Malin Breiby, Dag Werner . Real time 3D observations of Portland Cement Carbonation at CO2 storage conditions. Environmental Science and Technology. 2020, 54(13), 8323-8332
dc.identifier.urihttp://hdl.handle.net/10852/80627
dc.description.abstractDepleted oil reservoirs are considered a viable solution to the global challenge of CO2 storage. A key concern is whether the wells can be suitably sealed with cement to hinder the escape of CO2. Under reservoir conditions, CO2 is in its supercritical state, and the high pressures and temperatures involved make real-time microscopic observations of cement degradation experimentally challenging. Here, we present an in situ 3D dynamic X-ray micro computed tomography (μ-CT) study of well cement carbonation at realistic reservoir stress, pore-pressure, and temperature conditions. The high-resolution time-lapse 3D images allow monitoring the progress of reaction fronts in Portland cement, including density changes, sample deformation, and mineral precipitation and dissolution. By switching between flow and nonflow conditions of CO2-saturated water through cement, we were able to delineate regimes dominated by calcium carbonate precipitation and dissolution. For the first time, we demonstrate experimentally the impact of the flow history on CO2 leakage risk for cement plugging. In-situ μ-CT experiments combined with geochemical modeling provide unique insight into the interactions between CO2 and cement, potentially helping in assessing the risks of CO2 storage in geological reservoirs.
dc.languageEN
dc.publisherACS Publications
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleReal time 3D observations of Portland Cement Carbonation at CO2 storage conditions
dc.typeJournal article
dc.creator.authorChavez Panduro, Elvia Anabela
dc.creator.authorCordonnier, Benoit
dc.creator.authorGawel, Kamila
dc.creator.authorBørve, Ingrid
dc.creator.authorIyer, Jaisree
dc.creator.authorCarroll, Susan
dc.creator.authorMichels Brito Miranda, Leander Edward
dc.creator.authorRogowska, Melania
dc.creator.authorMcBeck, Jessica Ann
dc.creator.authorSørensen, Henning Osholm
dc.creator.authorWalsh, Stuart D.C.
dc.creator.authorRenard, Francois
dc.creator.authorGibaud, Alain
dc.creator.authorTorsæter, Malin
dc.creator.authorBreiby, Dag Werner
cristin.unitcode185,15,22,20
cristin.unitnameGEO Physics of Geological processes
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1818849
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Environmental Science and Technology&rft.volume=54&rft.spage=8323&rft.date=2020
dc.identifier.jtitleEnvironmental Science and Technology
dc.identifier.volume54
dc.identifier.issue13
dc.identifier.startpage8323
dc.identifier.endpage8332
dc.identifier.doihttps://doi.org/10.1021/acs.est.0c00578
dc.identifier.urnURN:NBN:no-83718
dc.subject.nviVDP::Matematikk og naturvitenskap: 400
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0013-936X
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/80627/2/1818849%2B0A%2Bacs.est.0c00578.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/275182
dc.relation.projectNFR/262644
dc.relation.projectNFR/267775
dc.relation.projectNFR/243765


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International