Hide metadata

dc.date.accessioned2020-10-07T18:26:53Z
dc.date.available2020-10-07T18:26:53Z
dc.date.created2020-07-30T10:28:01Z
dc.date.issued2020
dc.identifier.citationZimmermann, Christian Verhoeven, Espen Førdestrøm Frodason, Ymir Kalmann Weiser, Philip Michael Varley, Joel B Vines, Lasse . Formation and control of the E2* center in implanted b-Ga2O3 by reverse-bias and zero-bias annealing. Journal of Physics D: Applied Physics. 2020, 53(46), 464001
dc.identifier.urihttp://hdl.handle.net/10852/80483
dc.description.abstractDeep-level transient spectroscopy measurements are conducted onβ-Ga2O3thin-filmsimplanted with helium and hydrogen (H) to study the formation of the defect levelE∗2(EA=0.71 eV) during heat treatments under an applied reverse-bias voltage (reverse-biasannealing). The formation ofE∗2during reverse-bias annealing is a thermally-activated processexhibiting an activation energy of around 1.0 eV to 1.3 eV, and applying larger reverse-biasvoltages during the heat treatment results in a larger concentration ofE∗2. In contrast, heattreatments without an applied reverse-bias voltage (zero-bias annealing) can be used to decreasetheE∗2concentration. The removal ofE∗2is more pronounced if zero-bias anneals are performedin the presence of H. A scenario for the formation ofE∗2is proposed, where the main effect ofreverse-bias annealing is an effective change in the Fermi-level position within the space-chargeregion, and whereE∗2is related to a defect complex involving intrinsic defects that exhibitsseveral different configurations whose relative formation energies depend on the Fermi-levelposition. One of these configurations gives rise toE∗2, and is more likely to form if theFermi-level position is further away from the conduction band edge. The defect complex relatedtoE∗2can become hydrogenated, and the corresponding hydrogenated complex is likely to formwhen the Fermi level is close to the conduction band edge. Di-vacancy defects formed byoxygen and gallium vacancies (VO−VGa) fulfill several of these requirements, and are proposedas potential candidates forE∗2.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleFormation and control of the E2* center in implanted b-Ga2O3 by reverse-bias and zero-bias annealing
dc.typeJournal article
dc.creator.authorZimmermann, Christian
dc.creator.authorVerhoeven, Espen Førdestrøm
dc.creator.authorFrodason, Ymir Kalmann
dc.creator.authorWeiser, Philip Michael
dc.creator.authorVarley, Joel B
dc.creator.authorVines, Lasse
cristin.unitcode185,15,4,90
cristin.unitnameHalvlederfysikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1821026
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Physics D: Applied Physics&rft.volume=53&rft.spage=464001&rft.date=2020
dc.identifier.jtitleJournal of Physics D: Applied Physics
dc.identifier.volume53
dc.identifier.issue46
dc.identifier.doihttps://doi.org/10.1088/1361-6463/aba64d
dc.identifier.urnURN:NBN:no-83575
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0022-3727
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/80483/1/ZimmermannC.JPhysDApplPhys.53.464001.2020_E2%2Bstar%2Bcenter%2Bin%2Bimplanted%2Bb-Ga2O3.pdf
dc.type.versionPublishedVersion
cristin.articleid464001
dc.relation.projectNOTUR/NORSTORE/NN9136K
dc.relation.projectNFR/245963
dc.relation.projectNFR/251131


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International