Hide metadata

dc.date.accessioned2020-08-27T17:51:53Z
dc.date.available2020-08-27T17:51:53Z
dc.date.created2020-08-19T23:18:26Z
dc.date.issued2020
dc.identifier.citationZehner, Jennifer Simone Røyne, Anja Wentzel, Alexander Sikorski, Pawel . Microbial-induced calcium carbonate precipitation: An experimental toolbox for in situ and real-time investigation of micro-scale pH evolution. RSC Advances. 2020, 10(35), 20485-20493
dc.identifier.urihttp://hdl.handle.net/10852/78847
dc.description.abstractConcrete is the second most consumed product by humans, after water. However, the production of conventional concrete causes more than 5% of anthropogenic CO2 emissions and therefore there is a need for emission-reduced construction materials. One method to produce a solid, concrete-like construction material is microbial-induced calcium carbonate precipitation (MICP). To get a better understanding of MICP it is important to be able to follow local pH changes in dissolution and precipitation processes of CaCO3. In this work we present a new method to study processes of MICP at the micro-scale in situ and in real time. We present two different methods to monitor the pH changes during the precipitation process of CaCO3. In the first method, the average pH of small sample volumes is measured in real time, and pH changes are subsequently correlated with processes in the sample by comparing to optical microscope results. The second method is introduced to follow local pH changes at a grain scale in situ and in real time. Furthermore, local pH changes during the dissolution of CaCO3 crystals are monitored. We demonstrate that these two methods are powerful tools to investigate the pH changes for both MICP precipitation and CaCO3 dissolution for knowledge-based improvement of MICP-based material properties.
dc.languageEN
dc.rightsAttribution-NonCommercial 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/
dc.titleMicrobial-induced calcium carbonate precipitation: An experimental toolbox for in situ and real-time investigation of micro-scale pH evolution
dc.typeJournal article
dc.creator.authorZehner, Jennifer Simone
dc.creator.authorRøyne, Anja
dc.creator.authorWentzel, Alexander
dc.creator.authorSikorski, Pawel
cristin.unitcode185,15,4,10
cristin.unitnameKondenserte fasers fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1824194
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=RSC Advances&rft.volume=10&rft.spage=20485&rft.date=2020
dc.identifier.jtitleRSC Advances
dc.identifier.volume10
dc.identifier.issue35
dc.identifier.startpage20485
dc.identifier.endpage20493
dc.identifier.doihttps://doi.org/10.1039/D0RA03897K
dc.identifier.urnURN:NBN:no-81996
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2046-2069
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/78847/2/1824194%2Bd0ra03897k.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/245963
dc.relation.projectNFR/269084


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial 3.0 Unported
This item's license is: Attribution-NonCommercial 3.0 Unported