Hide metadata

dc.date.accessioned2020-08-17T18:17:00Z
dc.date.available2020-08-17T18:17:00Z
dc.date.created2020-08-02T16:48:21Z
dc.date.issued2020
dc.identifier.citationPires, Sandrine Vandenbussche, V. Kansal, V. Bender, R. Blot, L. Bonino, D. Boucaud, A. Brinchmann, Jarle Capobianco, V. Carretero, J. Castellano, M. Cavuoti, S. Clédassou, Rodolphe Congedo, G. Conversi, L. Corcione, L. Dubath, F. Fosalba, P. Frailis, M. Franceschi, E. Fumana, M. Grupp, F. Hormuth, F. Kermiche, S. Knabenhans, M. Kohley, Ralf Kubik, B. Kunz, Martin Ligori, S. Lilje, Per Barth Lloro, Ivan Maiorano, E. Marggraf, O. Massey, R. Meylan, G. Padilla, C. Paltani, S. Pasian, F. Poncet, M. Potter, D. Raison, F. Rhodes, J. Roncarelli, M. Saglia, R. Schneider, Peter Secroun, A. Serrano, S. Stadel, J. Tallada Crespi, P. Tereno, I. Toledo-Moreo, Rafael Wang, Y. . Euclid: Reconstruction of weak-lensing mass maps for non-Gaussianity studies. Astronomy and Astrophysics. 2020, 638
dc.identifier.urihttp://hdl.handle.net/10852/78433
dc.description.abstractWeak lensing, which is the deflection of light by matter along the line of sight, has proven to be an efficient method for constraining models of structure formation and reveal the nature of dark energy. So far, most weak-lensing studies have focused on the shear field that can be measured directly from the ellipticity of background galaxies. However, within the context of forthcoming full-sky weak-lensing surveys such as Euclid, convergence maps (mass maps) offer an important advantage over shear fields in terms of cosmological exploitation. While it carry the same information, the lensing signal is more compressed in the convergence maps than in the shear field. This simplifies otherwise computationally expensive analyses, for instance, non-Gaussianity studies. However, the inversion of the non-local shear field requires accurate control of systematic effects caused by holes in the data field, field borders, shape noise, and the fact that the shear is not a direct observable (reduced shear). We present the two mass-inversion methods that are included in the official Euclid data-processing pipeline: the standard Kaiser & Squires method (KS), and a new mass-inversion method (KS+) that aims to reduce the information loss during the mass inversion. This new method is based on the KS method and includes corrections for mass-mapping systematic effects. The results of the KS+ method are compared to the original implementation of the KS method in its simplest form, using the Euclid Flagship mock galaxy catalogue. In particular, we estimate the quality of the reconstruction by comparing the two-point correlation functions and third- and fourth-order moments obtained from shear and convergence maps, and we analyse each systematic effect independently and simultaneously. We show that the KS+ method substantially reduces the errors on the two-point correlation function and moments compared to the KS method. In particular, we show that the errors introduced by the mass inversion on the two-point correlation of the convergence maps are reduced by a factor of about 5, while the errors on the third- and fourth-order moments are reduced by factors of about 2 and 10, respectively.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleEuclid: Reconstruction of weak-lensing mass maps for non-Gaussianity studies
dc.typeJournal article
dc.creator.authorPires, Sandrine
dc.creator.authorVandenbussche, V.
dc.creator.authorKansal, V.
dc.creator.authorBender, R.
dc.creator.authorBlot, L.
dc.creator.authorBonino, D.
dc.creator.authorBoucaud, A.
dc.creator.authorBrinchmann, Jarle
dc.creator.authorCapobianco, V.
dc.creator.authorCarretero, J.
dc.creator.authorCastellano, M.
dc.creator.authorCavuoti, S.
dc.creator.authorClédassou, Rodolphe
dc.creator.authorCongedo, G.
dc.creator.authorConversi, L.
dc.creator.authorCorcione, L.
dc.creator.authorDubath, F.
dc.creator.authorFosalba, P.
dc.creator.authorFrailis, M.
dc.creator.authorFranceschi, E.
dc.creator.authorFumana, M.
dc.creator.authorGrupp, F.
dc.creator.authorHormuth, F.
dc.creator.authorKermiche, S.
dc.creator.authorKnabenhans, M.
dc.creator.authorKohley, Ralf
dc.creator.authorKubik, B.
dc.creator.authorKunz, Martin
dc.creator.authorLigori, S.
dc.creator.authorLilje, Per Barth
dc.creator.authorLloro, Ivan
dc.creator.authorMaiorano, E.
dc.creator.authorMarggraf, O.
dc.creator.authorMassey, R.
dc.creator.authorMeylan, G.
dc.creator.authorPadilla, C.
dc.creator.authorPaltani, S.
dc.creator.authorPasian, F.
dc.creator.authorPoncet, M.
dc.creator.authorPotter, D.
dc.creator.authorRaison, F.
dc.creator.authorRhodes, J.
dc.creator.authorRoncarelli, M.
dc.creator.authorSaglia, R.
dc.creator.authorSchneider, Peter
dc.creator.authorSecroun, A.
dc.creator.authorSerrano, S.
dc.creator.authorStadel, J.
dc.creator.authorTallada Crespi, P.
dc.creator.authorTereno, I.
dc.creator.authorToledo-Moreo, Rafael
dc.creator.authorWang, Y.
cristin.unitcode185,15,3,0
cristin.unitnameInstitutt for teoretisk astrofysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1821216
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Astronomy and Astrophysics&rft.volume=638&rft.spage=&rft.date=2020
dc.identifier.jtitleAstronomy and Astrophysics
dc.identifier.volume638
dc.identifier.pagecount16
dc.identifier.doihttps://doi.org/10.1051/0004-6361/201936865
dc.identifier.urnURN:NBN:no-81548
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0004-6361
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/78433/2/aa36865-19.pdf
dc.type.versionPublishedVersion
cristin.articleidA141
dc.relation.projectNFR/287772


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International