Hide metadata

dc.date.accessioned2020-08-15T18:57:30Z
dc.date.available2021-07-21T22:45:42Z
dc.date.created2020-07-25T19:55:48Z
dc.date.issued2020
dc.identifier.citationmengjun, xue Sampath, Janani Gebart, Rachel Haugen, Håvard Jostein Lyngstadaas, Ståle Petter Pfaendtner, Jim Drobny, Gary . Studies of dynamic binding of amino acids to TiO2 nanoparticle surfaces by Solution NMR and Molecular Dynamics Simulations. Langmuir. 2020
dc.identifier.urihttp://hdl.handle.net/10852/78406
dc.description.abstractAdsorption of biomolecules onto material surfaces involves a potentially complex mechanism where molecular species interact to varying degrees with a heterogeneous material surface. Surface adsorption studies by atomic force microscopy (AFM), Sum Frequency Generation (SFG) spectroscopy, and solid state NMR (ssNMR), detect the structures and interactions of biomolecular species that are bound to material surfaces and which, in the absence of a solid liquid interface, do not exchange rapidly between surface-bound forms and free molecular species in bulk solution. Solution NMR has the potential to complement these techniques by detecting and studying transiently bound biomolecules at the liquid-solid interface. Herein we show that dark-state exchange saturation transfer (DEST) NMR experiments on gel-stabilized TiO2 nanoparticle (NP) samples detect several forms of biomolecular adsorption onto titanium (IV) oxide surfaces. Specifically, we use the DEST approach to study the interaction of amino acids arginine (Arg), lysine (Lys), leucine (Leu), alanine (Ala), and aspartic acid (Asp) with TiO2 rutile nanoparticle surfaces. Whereas Leu, Ala, and Asp display only a single weakly interacting form in the presence of TiO2 nanoparticles , Arg and Lys displayed at least two distinct bound forms: a species that is surface bound and retains a degree of reorientational motion, and a second more tightly bound form characterized by broadened DEST profiles upon addition of TiO2 nanoparticles. Molecular Dynamics simulations indicate different surface bound states for both Lys and Arg depending on the degree of TiO2 surface hydroxylation, but only a single bound state for Asp regardless of the degree of surface hydroxylation, in agreement with results obtained from analysis of DEST profiles.
dc.languageEN
dc.publisherACS Publications
dc.titleStudies of dynamic binding of amino acids to TiO2 nanoparticle surfaces by Solution NMR and Molecular Dynamics Simulations
dc.typeJournal article
dc.creator.authormengjun, xue
dc.creator.authorSampath, Janani
dc.creator.authorGebart, Rachel
dc.creator.authorHaugen, Håvard Jostein
dc.creator.authorLyngstadaas, Ståle Petter
dc.creator.authorPfaendtner, Jim
dc.creator.authorDrobny, Gary
cristin.unitcode185,16,17,62
cristin.unitnameBiomaterialer
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2
dc.identifier.cristin1820500
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Langmuir&rft.volume=&rft.spage=&rft.date=2020
dc.identifier.jtitleLangmuir
dc.identifier.doihttps://doi.org/10.1021/acs.langmuir.0c01256
dc.identifier.urnURN:NBN:no-81521
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0743-7463
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/78406/1/Drobny_paper.pdf
dc.type.versionAcceptedVersion
cristin.articleidacs.langmuir.0c01256
dc.relation.projectNASA/NNX17AK86G
dc.relation.projectNATSCIFOUND/MCB-1715123
dc.relation.projectNFR/231530


Files in this item

Appears in the following Collection

Hide metadata