Hide metadata

dc.date.accessioned2020-08-07T18:34:03Z
dc.date.available2020-08-07T18:34:03Z
dc.date.created2020-05-12T18:40:42Z
dc.date.issued2020
dc.identifier.citationSunde, Øyvind Friis, Henrik Andersen, Tom Trumbull, Robert Wiedenbeck, Michael Lyckberg, Peter Agostini, Samuele Casey, William H. Yu, Ping . Boron isotope composition of coexisting tourmaline and hambergite in alkaline and granitic pegmatites. Lithos. 2020, 352-353
dc.identifier.urihttp://hdl.handle.net/10852/78207
dc.description.abstractThe boron isotopic composition of tourmaline and hambergite (Be2BO3[OH,F]) from peraluminous (n = 12), peralkaline (n = 1), and peralkaline nepheline syenite (n = 16) pegmatites has been measured by secondary ion mass spectrometry, for which a new hambergite reference material was developed. The focus of this study is on nepheline syenite pegmatites from the Larvik Plutonic Complex (Norway) and one peralkaline pegmatite related to the nearby Eikeren-Skrim Complex (Norway), where we investigate the source of boron as being from magmatic vs. external fluids. Tourmaline-hambergite mineral pairs were also analysed from peraluminous pegmatite localities (Russia, Tajikistan, and Pakistan) to test for systematic B-isotope fractionation between these two minerals. Tourmaline and hambergite from peraluminous granitic pegmatites have light boron ratios (δ11B = −12.9to −1.0‰) associated with S-type granites, whereas peralkaline granitic and nepheline syenite pegmatites have boron ratios (δ11B = −1.7 to 11.8‰), which we interpret is a result of heavy‑boron enrichment from external fluids. Our data show that hambergite tracks isotope variations of its geochemical setting and could therefore be used as a proxy mineral in place of tourmaline when geochemical stability favours hambergite. The results suggest a slight but consistent partitioning of B-isotopes between tourmaline and hambergite, with Δ11B = δ11Btourmaline−δ11Bhambergite in the range of approximately −3‰ to −5‰. Boron is in trigonal coordination with oxygen in both of these mineral phases as verified by NMR. Single crystal XRD analyses of tourmaline and hambergite reveal consistent longer <B-O > distances of tourmaline relative to hambergite. We attribute the boron isotopic fractionation to the longer <B-O > bond-lengths in tourmaline compared with hambergite.en_US
dc.languageEN
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleBoron isotope composition of coexisting tourmaline and hambergite in alkaline and granitic pegmatitesen_US
dc.typeJournal articleen_US
dc.creator.authorSunde, Øyvind
dc.creator.authorFriis, Henrik
dc.creator.authorAndersen, Tom
dc.creator.authorTrumbull, Robert
dc.creator.authorWiedenbeck, Michael
dc.creator.authorLyckberg, Peter
dc.creator.authorAgostini, Samuele
dc.creator.authorCasey, William H.
dc.creator.authorYu, Ping
cristin.unitcode185,28,0,0
cristin.unitnameNaturhistorisk museum
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1810632
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Lithos&rft.volume=352-353&rft.spage=&rft.date=2020
dc.identifier.jtitleLithos
dc.identifier.volume352-353
dc.identifier.pagecount15
dc.identifier.doihttps://doi.org/10.1016/j.lithos.2019.105293
dc.identifier.urnURN:NBN:no-81316
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn0024-4937
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/78207/1/Sunde%2Bet%2Bal%2B2020_Boron%2Bisotopes%2Bin%2BLPC.pdf
dc.type.versionPublishedVersion
cristin.articleid105293


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International