Hide metadata

dc.date.accessioned2020-07-13T18:03:41Z
dc.date.available2020-07-13T18:03:41Z
dc.date.created2019-11-20T12:29:36Z
dc.date.issued2019
dc.identifier.citationLiao, Jin Hanisco, Thomas F. Wolfe, Glenn M. Clair, Jason M. St. Jimenez, José L. Campuzano-Jost, Pedro Nault, Benjamin A. Fried, Alan Marais, Eloise A. Gonzalez Abad, Gonzalo Chance, Kelly V. Jethva, Hiren T Ryerson, Thomas B. Warneke, Carsten Wisthaler, Armin . Towards a satellite formaldehyde - In situ hybrid estimate for organic aerosol abundance. Atmospheric Chemistry and Physics. 2019, 19(5), 2765-2785
dc.identifier.urihttp://hdl.handle.net/10852/77834
dc.description.abstractOrganic aerosol (OA) is one of the main components of the global particulate burden and intimately links natural and anthropogenic emissions with air quality and climate. It is challenging to accurately represent OA in global models. Direct quantification of global OA abundance is not possible with current remote sensing technology; however, it may be possible to exploit correlations of OA with remotely observable quantities to infer OA spatiotemporal distributions. In particular, formaldehyde (HCHO) and OA share common sources via both primary emissions and secondary production from oxidation of volatile organic compounds (VOCs). Here, we examine OA–HCHO correlations using data from summertime airborne campaigns investigating biogenic (NASA SEAC4RS and DC3), biomass burning (NASA SEAC4RS), and anthropogenic conditions (NOAA CalNex and NASA KORUS-AQ). In situ OA correlates well with HCHO (r=0.59–0.97), and the slope and intercept of this relationship depend on the chemical regime. For biogenic and anthropogenic regions, the OA–HCHO slopes are higher in low NOx conditions, because HCHO yields are lower and aerosol yields are likely higher. The OA–HCHO slope of wildfires is over 9 times higher than that for biogenic and anthropogenic sources. The OA–HCHO slope is higher for highly polluted anthropogenic sources (e.g., KORUS-AQ) than less polluted (e.g., CalNex) anthropogenic sources. Near-surface OAs over the continental US are estimated by combining the observed in situ relationships with HCHO column retrievals from NASA's Ozone Monitoring Instrument (OMI). HCHO vertical profiles used in OA estimates are from climatology a priori profiles in the OMI HCHO retrieval or output of specific period from a newer version of GEOS-Chem. Our OA estimates compare well with US EPA IMPROVE data obtained over summer months (e.g., slope =0.60–0.62, r=0.56 for August 2013), with correlation performance comparable to intensively validated GEOS-Chem (e.g., slope =0.57, r=0.56) with IMPROVE OA and superior to the satellite-derived total aerosol extinction (r=0.41) with IMPROVE OA. This indicates that OA estimates are not very sensitive to these HCHO vertical profiles and that a priori profiles from OMI HCHO retrieval have a similar performance to that of the newer model version in estimating OA. Improving the detection limit of satellite HCHO and expanding in situ airborne HCHO and OA coverage in future missions will improve the quality and spatiotemporal coverage of our OA estimates, potentially enabling constraints on global OA distribution.en_US
dc.languageEN
dc.publisherCopernicus GmbH
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleTowards a satellite formaldehyde - In situ hybrid estimate for organic aerosol abundanceen_US
dc.typeJournal articleen_US
dc.creator.authorLiao, Jin
dc.creator.authorHanisco, Thomas F.
dc.creator.authorWolfe, Glenn M.
dc.creator.authorClair, Jason M. St.
dc.creator.authorJimenez, José L.
dc.creator.authorCampuzano-Jost, Pedro
dc.creator.authorNault, Benjamin A.
dc.creator.authorFried, Alan
dc.creator.authorMarais, Eloise A.
dc.creator.authorGonzalez Abad, Gonzalo
dc.creator.authorChance, Kelly V.
dc.creator.authorJethva, Hiren T
dc.creator.authorRyerson, Thomas B.
dc.creator.authorWarneke, Carsten
dc.creator.authorWisthaler, Armin
cristin.unitcode185,15,12,62
cristin.unitnameMiljøvitenskap
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1749858
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Atmospheric Chemistry and Physics&rft.volume=19&rft.spage=2765&rft.date=2019
dc.identifier.jtitleAtmospheric Chemistry and Physics
dc.identifier.volume19
dc.identifier.issue5
dc.identifier.startpage2765
dc.identifier.endpage2785
dc.identifier.doihttps://doi.org/10.5194/acp-19-2765-2019
dc.identifier.urnURN:NBN:no-80961
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn1680-7316
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/77834/1/Liao%2Bet%2Bal.%2BAtmos.%2BChem.%2BPhys.%2B2019.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International