Hide metadata

dc.date.accessioned2020-07-10T12:57:15Z
dc.date.available2020-07-10T12:57:15Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/10852/77742
dc.description.abstractIn the Himalayas –the mountain range in Asia, there is a high demand for hydro-meteorological datasets for the water resource management. Hydro-meteorological observations is minimal because of the adverse geographical conditions and this represent a problem. Remote sensing and climate models offer a global perspective on many atmospheric climatic variables. However, low spatial resolution and inability to measure some atmospheric properties, such as Aerosol Optical Depth (AOD) over the brighter surface limits their ability to reflect the effects on hydrologic systems. During this PhD study, the candidate and team developed an empirical based model to estimate the AOD for the region. The model helps to understand aerosol and its impacts on the Himalayan hydrology. Similarly, we evaluated a regional climate model and reanalysed datasets for hydrological simulations. We fond the highest-fidelity of discharge simulation when using observation combined Watch Forcing Dataset ERA Interim (WFDEI) datasets. Our results show the successful application of global forcing datasets over the Himalayas. Finally, we demonstrated that catchment discretization has a significant impact on hydrologic simulation results. Triangular Irregular Network (TIN) based catchment discretization gives the highest model performance. Hence the selection of models with an appropriate complexity and accurate forcing data are the most required to achieve reliable hydrologic simulation over the entire Himalayan regionen_US
dc.language.isoenen_US
dc.relation.haspartPaper I: Aerosol Optical Depth Over the Nepalese Cryosphere Derived From an Empirical Model. Bhattarai, Bikas Chandra; Burkhart, John; Stordal, Frode; Xu, Chong-Yu. Frontiers in Earth Science. 2019, 7:178, DOI: 10.3389/feart.2019.00178. The article is included in the thesis. Also available in DUO: http://urn.nb.no/URN:NBN:no-79640
dc.relation.haspartPaper II: Evaluation of global forcing datasets for hydropower inflow simulation in Nepal. Bikas Chandra Bhattarai, John Faulkner Burkhart, Lena M. Tallaksen, Chong-Yu Xu, Felix Nikolaus Matt. Hydrology Research (2020) 51 (2): 202–225. DOI: 10.2166/nh.2020.079. The article is included in the thesis. Also available at: https://doi.org/10.2166/nh.2020.079
dc.relation.haspartPaper III: Impact of catchment discretization and imputed radiation on model response: a case study from central Himalayan catchment. Bikas C. Bhattarai , Olga Silantyeva, John F. Burkhart, Aynom T. Teweldebrhan, Sigbjørn Helset, and Ola Skavhaug. Water (2020) 12 (9): 2339. DOI: 10.3390/w12092339. The paper is included in the thesis. Also available at: https://doi.org/10.3390/w12092339
dc.relation.urihttp://urn.nb.no/URN:NBN:no-79640
dc.relation.urihttps://doi.org/10.2166/nh.2020.079
dc.relation.urihttps://doi.org/10.3390/w12092339
dc.titleHydrologic model forcing over the Himalayaen_US
dc.typeDoctoral thesisen_US
dc.creator.authorBhattarai, Bikas Chandra
dc.identifier.urnURN:NBN:no-80849
dc.type.documentDoktoravhandlingen_US
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/77742/3/PhD-Bhattarai-2020.pdf


Files in this item

Appears in the following Collection

Hide metadata