Hide metadata

dc.date.accessioned2020-06-26T18:02:04Z
dc.date.available2021-02-10T23:45:58Z
dc.date.created2020-02-24T08:38:53Z
dc.date.issued2020
dc.identifier.citationWeiser, Philip Michael Monakhov, Eduard Haug, Halvard Wiig, Marie Syre Søndenå, Rune . Hydrogen-related defects measured by infrared spectroscopy in multicrystalline silicon wafers throughout an illuminated annealing process. Journal of Applied Physics. 2020, 127(6)
dc.identifier.urihttp://hdl.handle.net/10852/77236
dc.description.abstractHydrogen (H) is thought to be strongly involved in the light and elevated temperature-induced degradation observed predominantly in p-type silicon wafers, but the nature of the defect or defects involved in this process is currently unknown. We have used infrared (IR) spectroscopy to detect the vibrational signatures due to the H–B, H–Ga, and H2*(C) defects in thin, hydrogenated, p-type multicrystalline silicon wafers after increasing the optical path length by preparation and polishing the edges of a stack of wafers. The concentrations of the H–B and H–Ga acceptor complexes are reduced to 80% of their starting values after low intensity (5 mW/cm2) illumination at room temperature for 96 h. Subsequent high intensity illumination (70 mW/cm2) at 150 °C for 7–8 h further decreases the concentrations of these defects; to ∼40% (H–B) and ∼50% (H–Ga) of their starting values. Our results show that, with careful sample preparation, IR spectroscopy can be used in conjunction with other techniques, e.g., quasisteady-state photoconductance, to investigate the involvement of different H-related point defects on degradation in solar-grade silicon wafers.
dc.languageEN
dc.titleHydrogen-related defects measured by infrared spectroscopy in multicrystalline silicon wafers throughout an illuminated annealing process
dc.typeJournal article
dc.creator.authorWeiser, Philip Michael
dc.creator.authorMonakhov, Eduard
dc.creator.authorHaug, Halvard
dc.creator.authorWiig, Marie Syre
dc.creator.authorSøndenå, Rune
cristin.unitcode185,15,17,20
cristin.unitnameSenter for Materialvitenskap og Nanoteknologi fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1796852
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Applied Physics&rft.volume=127&rft.spage=&rft.date=2020
dc.identifier.jtitleJournal of Applied Physics
dc.identifier.volume127
dc.identifier.issue6
dc.identifier.pagecount7
dc.identifier.doihttps://doi.org/10.1063/1.5142476
dc.identifier.urnURN:NBN:no-80374
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0021-8979
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/77236/1/J.Appl.Phys.2020_Weiser_et_al.pdf
dc.type.versionPublishedVersion
cristin.articleid065703
dc.relation.projectNFR/280909


Files in this item

Appears in the following Collection

Hide metadata