Hide metadata

dc.date.accessioned2020-06-19T19:38:24Z
dc.date.available2021-10-21T22:45:45Z
dc.date.created2020-01-06T13:56:47Z
dc.date.issued2019
dc.identifier.citationMontes-Hernandez, German Bah, Mahamadou Diouma Renard, Francois . Mechanism of the formation of engineered magnesite: A critical mineral to mitigate CO2 industrial emissions. Journal of CO2 Utilization. 2019, 35, 272-276
dc.identifier.urihttp://hdl.handle.net/10852/77099
dc.description.abstractMagnesium carbonate production at the industrial scale is a realistic option to reduce the industrial emissions of CO2. Ultrabasic rocks and/or alkaline mine waste provide magnesium sources and are widely available in the Earth’s crust. Here, we investigated the aqueous carbonation of magnesium hydroxide under moderate temperature (25–90 °C) and pressure (initial pressure of CO2 = 50 bar) using NaOH as the CO2 sequestering agent. From time-resolved Raman measurements, we demonstrate that the aqueous carbonation of magnesium hydroxide can be an effective engineered method to trap CO2 into a solid material and produce large amounts of magnesite MgCO3 (6 kg/m3h), or hydromagnesite Mg5(CO3)4(OH)2.4H2O (120 kg/m3h) at 90 °C or nesquehonite MgCO3.3H2O (40 kg/m3h) at 25 °C. Higher production rates were measured for nesquehonite (at 25 °C) and hydromagnesite (at 60 and 90 °C). However, only the magnesite produced at 90 °C ensures a permanent CO2 storage because this mineral is the most stable Mg carbonate under Earth surface conditions, and it could be co-used as construction material in roadbeds, bricks with fire-retarding property and granular fill. The use of specific organic additives can reduce the reaction temperature to precipitate magnesite. For example, ferric EDTA (ethylenediaminetetraacetic acid) reduces the temperature from 90 to 60 °C. However, more time is required to complete magnesite precipitation reaction at this lower temperature (15 h at 90 °C and 7 days at 60 °C). These results suggests that functionalized organic groups can reduce the energetic barriers during magnesite nucleation.
dc.languageEN
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleMechanism of the formation of engineered magnesite: A critical mineral to mitigate CO2 industrial emissions
dc.typeJournal article
dc.creator.authorMontes-Hernandez, German
dc.creator.authorBah, Mahamadou Diouma
dc.creator.authorRenard, Francois
cristin.unitcode185,15,22,20
cristin.unitnameGEO Physics of Geological processes
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.cristin1766910
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of CO2 Utilization&rft.volume=35&rft.spage=272&rft.date=2019
dc.identifier.jtitleJournal of CO2 Utilization
dc.identifier.volume35
dc.identifier.startpage272
dc.identifier.endpage276
dc.identifier.doihttps://doi.org/10.1016/j.jcou.2019.10.006
dc.identifier.urnURN:NBN:no-80219
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2212-9820
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/77099/1/2019_JCO2Utilization_MontesHernandez.pdf
dc.type.versionAcceptedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International