Hide metadata

dc.date.accessioned2020-06-11T18:33:02Z
dc.date.available2020-06-11T18:33:02Z
dc.date.created2019-09-05T11:19:30Z
dc.date.issued2019
dc.identifier.citationFarangitakis, Georgios Pavlos Sokoutis, Dimitrios McCaffrey, Kenneth J.W. Willingshofer, Ernst Kalnins, Lara M Phethean, Jordan JJ Van Hunen, Jeroen van Steen, V . Analogue Modeling of Plate Rotation Effects in Transform Margins and Rift-Transform Intersections. Tectonics. 2019, 38(3), 823-841
dc.identifier.urihttp://hdl.handle.net/10852/76897
dc.description.abstractTransform margins are first‐order tectonic features that accommodate oceanic spreading. Uncertainties remain about their evolution, genetic relationship to oceanic spreading, and general structural character. When the relative motion of the plates changes during the margin evolution, further structural complexity is added. This work investigates the evolution of transform margins and associated rift‐transform intersections, using an analogue modeling approach that simulates changing plate motions. We investigate the effects of different crustal rheologies by using either (a) a two‐layer brittle‐ductile configuration to simulate upper and lower continental crust, or (b) a single layer brittle configuration to simulate oceanic crust. The modeled rifting is initially orthogonal, followed by an imposed plate vector change of 7° that results in oblique rifting and plate overlap (transpression) or underlap (transtension) along each transform margin. This oblique deformation reactivates and overprints earlier orthogonal structures and is representative of natural examples. We find that (a) a transtensional shift in the plate direction produces a large strike‐slip principal displacement zone, accompanied by en‐echelon oblique‐normal faults that accommodate the horizontal displacement until the new plate motion vector is stabilized, while (b) a transpressional shift produces compressional structures such as thrust fronts in a triangular zone in the area of overlap. These observations are in good agreement with natural examples from the Gulf of California (transtensional) and Tanzania Coastal Basin (transpressional) shear margins and illustrate that when these deformation patterns are present, a component of plate vector change should be considered in the evolution of transform margins.en_US
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleAnalogue Modeling of Plate Rotation Effects in Transform Margins and Rift-Transform Intersectionsen_US
dc.typeJournal articleen_US
dc.creator.authorFarangitakis, Georgios Pavlos
dc.creator.authorSokoutis, Dimitrios
dc.creator.authorMcCaffrey, Kenneth J.W.
dc.creator.authorWillingshofer, Ernst
dc.creator.authorKalnins, Lara M
dc.creator.authorPhethean, Jordan JJ
dc.creator.authorVan Hunen, Jeroen
dc.creator.authorvan Steen, V
cristin.unitcode185,15,22,0
cristin.unitnameInstitutt for geofag
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1721841
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Tectonics&rft.volume=38&rft.spage=823&rft.date=2019
dc.identifier.jtitleTectonics
dc.identifier.volume38
dc.identifier.issue3
dc.identifier.startpage823
dc.identifier.endpage841
dc.identifier.doihttps://doi.org/10.1029/2018TC005261
dc.identifier.urnURN:NBN:no-79966
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn0278-7407
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/76897/1/Farangitakis_et_al-2019-Tectonics.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International