Hide metadata

dc.date.accessioned2020-06-06T18:15:02Z
dc.date.available2020-06-06T18:15:02Z
dc.date.created2019-10-30T13:38:54Z
dc.date.issued2019
dc.identifier.citationDemurtas, Matteo Smith, Steven A.F. Prior, David J. Brenker, Frank E. Di Toro, Giulio . Grain size sensitive creep during simulated seismic slip in nanogranular fault gouges: constraints from Transmission Kikuchi Diffraction (TKD). Journal of Geophysical Research (JGR): Solid Earth. 2019, 124(10), 10197-10209
dc.identifier.urihttp://hdl.handle.net/10852/76767
dc.description.abstractNanograins (≪1 μm) are common in the principal slip zones of natural and experimental faults, but their formation and influence on fault mechanical behavior are poorly understood. We performed transmission Kikuchi diffraction (spatial resolution 20–50 nm) on the principal slip zone of an experimental carbonate gouge (50 wt% calcite, 50 wt% dolomite) that was deformed at a maximum slip rate of 1.2 m/s for 0.4 m displacement. The principal slip zone (PSZ) consists of nanogranular aggregates of calcite, Mg‐calcite, dolomite and periclase, dominated by grain sizes in the range of 100–300 nm. Nanograins in the ultrafine (< 800 nm) PSZ matrix have negligible internal lattice distortion, while grains > 800 nm in size contain subgrains. A weak crystallographic preferred orientation is observed as a clustering of calcite c ‐axes within the PSZ. The high‐resolution microstructural observations from transmission Kikuchi diffraction, in combination with published flow laws for calcite, are compatible with high‐velocity slip in the PSZ having been accommodated by a combination of grain size sensitive creep in the ultrafine matrix, and grain size insensitive creep in the larger grains, with the former process likely controlling the bulk rheology of the PSZ after dynamic weakening. If the activation energy for creep is lowered by the nanogranular nature of the aggregates, this could facilitate grain size sensitive creep at high (coseismic) strain rates and only moderate bulk temperatures of approximately 600 °C, although temperatures up to 1000 °C could be locally achieved due to processes such as flash heating.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleGrain size sensitive creep during simulated seismic slip in nanogranular fault gouges: constraints from Transmission Kikuchi Diffraction (TKD)
dc.typeJournal article
dc.creator.authorDemurtas, Matteo
dc.creator.authorSmith, Steven A.F.
dc.creator.authorPrior, David J.
dc.creator.authorBrenker, Frank E.
dc.creator.authorDi Toro, Giulio
cristin.unitcode185,15,18,10
cristin.unitnameNJORD geofag - senter for studier av jordens fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1742270
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Geophysical Research (JGR): Solid Earth&rft.volume=124&rft.spage=10197&rft.date=2019
dc.identifier.jtitleJournal of Geophysical Research (JGR): Solid Earth
dc.identifier.volume124
dc.identifier.issue10
dc.identifier.startpage10197
dc.identifier.endpage10209
dc.identifier.doihttps://doi.org/10.1029/2019JB018071
dc.identifier.urnURN:NBN:no-79854
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2169-9313
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/76767/4/2019JB018071.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International