Hide metadata

dc.date.accessioned2020-05-22T19:11:18Z
dc.date.available2020-05-22T19:11:18Z
dc.date.created2020-01-27T14:27:14Z
dc.date.issued2019
dc.identifier.citationHadjineophytou, Chris Anonsen, Jan Haug Wang, Nelson Ma, Kevin Viburiene, Raimonda Vik, Åshild Harrison, Odile B Maiden, Martin CJ Grad, Yonatan H. Koomey, John Michael . Genetic determinants of genus-level glycan diversity in a bacterial protein glycosylation system. PLoS Genetics. 2019
dc.identifier.urihttp://hdl.handle.net/10852/76115
dc.description.abstractThe human pathogens N. gonorrhoeae and N. meningitidis display robust intra- and interstrain glycan diversity associated with their O-linked protein glycosylation (pgl) systems. In an effort to better understand the evolution and function of protein glycosylation operating there, we aimed to determine if other human-restricted, Neisseria species similarly glycosylate proteins and if so, to assess the levels of glycoform diversity. Comparative genomics revealed the conservation of a subset of genes minimally required for O-linked protein glycosylation glycan and established those pgl genes as core genome constituents of the genus. In conjunction with mass spectrometric–based glycan phenotyping, we found that extant glycoform repertoires in N. gonorrhoeae, N. meningitidis and the closely related species N. polysaccharea and N. lactamica reflect the functional replacement of a progenitor glycan biosynthetic pathway. This replacement involved loss of pgl gene components of the primordial pathway coincident with the acquisition of two exogenous glycosyltransferase genes. Critical to this discovery was the identification of a ubiquitous but previously unrecognized glycosyltransferase gene (pglP) that has uniquely undergone parallel but independent pseudogenization in N. gonorrhoeae and N. meningitidis. We suggest that the pseudogenization events are driven by processes of compositional epistasis leading to gene decay. Additionally, we documented instances where inter-species recombination influences pgl gene status and creates discordant genetic interactions due ostensibly to the multi-locus nature of pgl gene networks. In summary, these findings provide a novel perspective on the evolution of protein glycosylation systems and identify phylogenetically informative, genetic differences associated with Neisseria species.
dc.languageEN
dc.publisherPublic Library of Science (PLoS)
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleGenetic determinants of genus-level glycan diversity in a bacterial protein glycosylation system
dc.typeJournal article
dc.creator.authorHadjineophytou, Chris
dc.creator.authorAnonsen, Jan Haug
dc.creator.authorWang, Nelson
dc.creator.authorMa, Kevin
dc.creator.authorViburiene, Raimonda
dc.creator.authorVik, Åshild
dc.creator.authorHarrison, Odile B
dc.creator.authorMaiden, Martin CJ
dc.creator.authorGrad, Yonatan H.
dc.creator.authorKoomey, John Michael
cristin.unitcode185,15,29,60
cristin.unitnameSeksjon for genetikk og evolusjonsbiologi
cristin.ispublishedtrue
cristin.qualitycode2
dc.identifier.cristin1783214
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=PLoS Genetics&rft.volume=&rft.spage=&rft.date=2019
dc.identifier.jtitlePLoS Genetics
dc.identifier.volume15
dc.identifier.issue12
dc.identifier.doihttps://doi.org/10.1371/journal.pgen.1008532
dc.identifier.urnURN:NBN:no-79207
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1553-7390
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/76115/4/journal.pgen.1008532.pdf
dc.type.versionPublishedVersion
cristin.articleide1008532
dc.relation.projectNFR/214442


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International