Hide metadata

dc.date.accessioned2020-05-20T19:55:59Z
dc.date.available2020-06-02T22:46:19Z
dc.date.created2020-01-18T12:39:51Z
dc.date.issued2020
dc.identifier.citationJess, David B. Snow, Ben Houston, Scott J. Bortha, Gert J. J. Fleck, Bernhard Prasad, S. Krishna Asensio Ramos, Andres Morton, Richard J. Keys, Peter H. Jafarzadeh, Shahin Stangalini, Marco Grant, Samuel D. T. Christian, Damian J. . A chromospheric resonance cavity in a sunspot mapped with seismology. Nature Astronomy. 2019
dc.identifier.urihttp://hdl.handle.net/10852/76051
dc.description.abstractSunspots are intense collections of magnetic fields that pierce through the Sun’s photosphere, with their signatures extending upwards into the outermost extremities of the solar corona1. Cutting-edge observations and simulations are providing insights into the underlying wave generation2, configuration3,4 and damping5 mechanisms found in sunspot atmospheres. However, the in situ amplification of magnetohydrodynamic waves6, rising from a few hundreds of metres per second in the photosphere to several kilometres per second in the chromosphere7, has, until now, proved difficult to explain. Theory predicts that the enhanced umbral wave power found at chromospheric heights may come from the existence of an acoustic resonator8,9,10, which is created due to the substantial temperature gradients experienced at photospheric and transition region heights11. Here, we provide strong observational evidence of a resonance cavity existing above a highly magnetic sunspot. Through a combination of spectropolarimetric inversions and comparisons with high-resolution numerical simulations, we provide a new seismological approach to mapping the geometry of the inherent temperature stratifications across the diameter of the underlying sunspot, with the upper boundaries of the chromosphere ranging between 1,300 ± 200 km and 2,300 ± 250 km. Our findings will allow the three-dimensional structure of solar active regions to be conclusively determined from relatively commonplace two-dimensional Fourier power spectra. The techniques presented are also readily suitable for investigating temperature-dependent resonance effects in other areas of astrophysics, including the examination of Earth–ionosphere wave cavities12.en_US
dc.languageEN
dc.titleA chromospheric resonance cavity in a sunspot mapped with seismologyen_US
dc.typeJournal articleen_US
dc.creator.authorJess, David B.
dc.creator.authorSnow, Ben
dc.creator.authorHouston, Scott J.
dc.creator.authorBortha, Gert J. J.
dc.creator.authorFleck, Bernhard
dc.creator.authorPrasad, S. Krishna
dc.creator.authorAsensio Ramos, Andres
dc.creator.authorMorton, Richard J.
dc.creator.authorKeys, Peter H.
dc.creator.authorJafarzadeh, Shahin
dc.creator.authorStangalini, Marco
dc.creator.authorGrant, Samuel D. T.
dc.creator.authorChristian, Damian J.
cristin.unitcode185,15,3,40
cristin.unitnameRosseland senter for solfysikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.cristin1776378
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nature Astronomy&rft.volume=&rft.spage=&rft.date=2019
dc.identifier.jtitleNature Astronomy
dc.identifier.volume4
dc.identifier.issue3
dc.identifier.startpage220
dc.identifier.endpage227
dc.identifier.doihttps://doi.org/10.1038/s41550-019-0945-2
dc.identifier.urnURN:NBN:no-79130
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn2397-3366
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/76051/1/article__postprint.pdf
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/76051/2/supplementary__postprint.pdf
dc.type.versionAcceptedVersion
dc.relation.projectNFR/262622


Files in this item

Appears in the following Collection

Hide metadata