Hide metadata

dc.date.accessioned2020-05-20T17:54:36Z
dc.date.available2020-05-20T17:54:36Z
dc.date.created2020-01-21T23:54:02Z
dc.date.issued2019
dc.identifier.citationNóbrega Siverio, Daniel Elias Moreno-Insertis, Fernando Martinez-Sykora, Juan Carlsson, Mats Szydlarski, Mikolaj Marcin . Nonequilibrium ionization and ambipolar diffusion in solar magnetic flux emergence processes. Astronomy and Astrophysics. 2019, 633(A66)
dc.identifier.urihttp://hdl.handle.net/10852/75996
dc.description.abstractContext. Magnetic flux emergence from the solar interior has been shown to be a key mechanism for unleashing a wide variety of phenomena. However, there are still open questions concerning the rise of the magnetized plasma through the atmosphere, mainly in the chromosphere, where the plasma departs from local thermodynamic equilibrium (LTE) and is partially ionized. Aims. We aim to investigate the impact of the nonequilibrium (NEQ) ionization and recombination and molecule formation of hydrogen, as well as ambipolar diffusion, on the dynamics and thermodynamics of the flux emergence process. Methods. Using the radiation-magnetohydrodynamic Bifrost code, we performed 2.5D numerical experiments of magnetic flux emergence from the convection zone up to the corona. The experiments include the NEQ ionization and recombination of atomic hydrogen, the NEQ formation and dissociation of H2 molecules, and the ambipolar diffusion term of the generalized Ohm’s law. Results. Our experiments show that the LTE assumption substantially underestimates the ionization fraction in most of the emerged region, leading to an artificial increase in the ambipolar diffusion and, therefore, in the heating and temperatures as compared to those found when taking the NEQ effects on the hydrogen ion population into account. We see that LTE also overestimates the number density of H2 molecules within the emerged region, thus mistakenly magnifying the exothermic contribution of the H2 molecule formation to the thermal energy during the flux emergence process. We find that the ambipolar diffusion does not significantly affect the amount of total unsigned emerged magnetic flux, but it is important in the shocks that cross the emerged region, heating the plasma on characteristic times ranging from 0.1 to 100 s. We also briefly discuss the importance of including elements heavier than hydrogen in the equation of state so as not to overestimate the role of ambipolar diffusion in the atmosphere.
dc.languageEN
dc.titleNonequilibrium ionization and ambipolar diffusion in solar magnetic flux emergence processes
dc.typeJournal article
dc.creator.authorNóbrega Siverio, Daniel Elias
dc.creator.authorMoreno-Insertis, Fernando
dc.creator.authorMartinez-Sykora, Juan
dc.creator.authorCarlsson, Mats
dc.creator.authorSzydlarski, Mikolaj Marcin
cristin.unitcode185,15,3,0
cristin.unitnameInstitutt for teoretisk astrofysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1779625
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Astronomy and Astrophysics&rft.volume=633&rft.spage=&rft.date=2019
dc.identifier.jtitleAstronomy and Astrophysics
dc.identifier.volume633
dc.identifier.issueA66
dc.identifier.pagecount15
dc.identifier.doihttps://doi.org/10.1051/0004-6361/201936944
dc.identifier.urnURN:NBN:no-79133
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0004-6361
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/75996/1/No%25CC%2581brega-Siverio%2Bet%2Bal.%2B-%2B2020%2B-%2BNonequilibrium%2Bionization%2Band%2Bambipolar%2Bdiffusion%2B.pdf
dc.type.versionPublishedVersion
cristin.articleidA66
dc.relation.projectNFR/262622


Files in this item

Appears in the following Collection

Hide metadata