Hide metadata

dc.date.accessioned2020-05-16T19:28:40Z
dc.date.available2020-05-16T19:28:40Z
dc.date.created2020-01-08T09:34:21Z
dc.date.issued2020
dc.identifier.citationFagny, Maud Platig, John Kuijjer, Marieke Lydia Lin, Xihong Quackenbush, John . Nongenic cancer-risk SNPs affect oncogenes, tumour-suppressor genes, and immune function. British Journal of Cancer. 2019
dc.identifier.urihttp://hdl.handle.net/10852/75823
dc.description.abstractBackground Genome-wide association studies (GWASes) have identified many noncoding germline single-nucleotide polymorphisms (SNPs) that are associated with an increased risk of developing cancer. However, how these SNPs affect cancer risk is still largely unknown. Methods We used a systems biology approach to analyse the regulatory role of cancer-risk SNPs in thirteen tissues. By using data from the Genotype-Tissue Expression (GTEx) project, we performed an expression quantitative trait locus (eQTL) analysis. We represented both significant cis- and trans-eQTLs as edges in tissue-specific eQTL bipartite networks. Results Each tissue-specific eQTL network is organised into communities that group sets of SNPs and functionally related genes. When mapping cancer-risk SNPs to these networks, we find that in each tissue, these SNPs are significantly overrepresented in communities enriched for immune response processes, as well as tissue-specific functions. Moreover, cancer-risk SNPs are more likely to be ‘cores’ of their communities, influencing the expression of many genes within the same biological processes. Finally, cancer-risk SNPs preferentially target oncogenes and tumour-suppressor genes, suggesting that they may alter the expression of these key cancer genes. Conclusions This approach provides a new way of understanding genetic effects on cancer risk and provides a biological context for interpreting the results of GWAS cancer studies.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleNongenic cancer-risk SNPs affect oncogenes, tumour-suppressor genes, and immune function
dc.typeJournal article
dc.creator.authorFagny, Maud
dc.creator.authorPlatig, John
dc.creator.authorKuijjer, Marieke Lydia
dc.creator.authorLin, Xihong
dc.creator.authorQuackenbush, John
cristin.unitcode185,57,55,0
cristin.unitnameMarieke Kuijjer Group - Computational Biology and Systems Medicine
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1768224
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=British Journal of Cancer&rft.volume=&rft.spage=&rft.date=2019
dc.identifier.jtitleBritish Journal of Cancer
dc.identifier.volume122
dc.identifier.issue4
dc.identifier.startpage569
dc.identifier.endpage577
dc.identifier.doihttps://doi.org/10.1038/s41416-019-0614-3
dc.identifier.urnURN:NBN:no-78843
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0007-0920
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/75823/1/2019-12-09_fagny_br_j_cancer.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/187615


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International