Hide metadata

dc.date.accessioned2020-04-20T18:46:57Z
dc.date.available2020-04-20T18:46:57Z
dc.date.created2019-11-08T08:07:10Z
dc.date.issued2019
dc.identifier.citationNogueira, Liebert Parreiras Rhayara, Dias Danielle, Bonfim . The Manufacture of GMP-Grade Bone Marrow Stromal Cells with Validated In Vivo Bone-Forming Potential in an Orthopedic Clinical Center in Brazil. Stem Cells International. 2019
dc.identifier.urihttp://hdl.handle.net/10852/74655
dc.description.abstractIn vitro-expanded bone marrow stromal cells (BMSCs) have long been proposed for the treatment of complex bone-related injuries because of their inherent potential to differentiate into multiple skeletal cell types, modulate inflammatory responses, and support angiogenesis. Although a wide variety of methods have been used to expand BMSCs on a large scale by using good manufacturing practice (GMP), little attention has been paid to whether the expansion procedures indeed allow the maintenance of critical cell characteristics and potency, which are crucial for therapeutic effectiveness. Here, we described standard procedures adopted in our facility for the manufacture of clinical-grade BMSC products with a preserved capacity to generate bone in vivo in compliance with the Brazilian regulatory guidelines for cells intended for use in humans. Bone marrow samples were obtained from trabecular bone. After cell isolation in standard monolayer flasks, BMSC expansion was subsequently performed in two cycles, in 2- and 10-layer cell factories, respectively. The average cell yield per cell factory at passage 1 was of 21.93±12.81×106 cells, while at passage 2, it was of 83.05±114.72×106 cells. All final cellular products were free from contamination with aerobic/anaerobic pathogens, mycoplasma, and bacterial endotoxins. The expanded BMSCs expressed CD73, CD90, CD105, and CD146 and were able to differentiate into osteogenic, chondrogenic, and adipogenic lineages in vitro. Most importantly, nine out of 10 of the cell products formed bone when transplanted in vivo. These validated procedures will serve as the basis for in-house BMSC manufacturing for use in clinical applications in our center.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleThe Manufacture of GMP-Grade Bone Marrow Stromal Cells with Validated In Vivo Bone-Forming Potential in an Orthopedic Clinical Center in Brazil
dc.typeJournal article
dc.creator.authorNogueira, Liebert Parreiras
dc.creator.authorRhayara, Dias
dc.creator.authorDanielle, Bonfim
cristin.unitcode185,16,17,7
cristin.unitnameKlinisk forskningslaboratorium
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1745158
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Stem Cells International&rft.volume=&rft.spage=&rft.date=2019
dc.identifier.jtitleStem Cells International
dc.identifier.volume2019
dc.identifier.doihttps://doi.org/10.1155/2019/2608482
dc.identifier.urnURN:NBN:no-77753
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1687-966X
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/74655/1/2608482.pdf
dc.type.versionPublishedVersion
cristin.articleid2608482


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International