Hide metadata

dc.date.accessioned2020-04-15T18:24:08Z
dc.date.available2021-03-21T23:45:45Z
dc.date.created2019-09-10T16:57:08Z
dc.date.issued2019
dc.identifier.citationMcBeck, Jessica Ann Cordonnier, Benoit Mair, Karen Renard, Francois . The evolving energy budget of experimental faults within continental crust: Insights from in situ dynamic X-ray microtomography. Journal of Structural Geology. 2019, 123, 42-53
dc.identifier.urihttp://hdl.handle.net/10852/74536
dc.description.abstractWe investigate the evolving distribution of strain produced by a sliding fault within intact crystalline rock, and the energetics of deformation that occur both on- and off-fault. We slid precut faults of differing roughness oriented at 45° to while acquiring in situ X-ray microtomograms. Digital volume correlation of tomograms provide estimates of the 3D displacement and strain fields. This characterization of the strain tensor field reveal that the differing fault roughness produced distinct slip behavior, degree of strain localization and accumulation, and energy budget partitioning. The rougher fault slipped more episodically, hosted a wider and more asymmetric damage zone, and accommodated less normal and shear strain. This fault consumed more energy in off-fault deformation (Wint) per volume and more energy in frictional slip (Wfric) as portions of the total energy input to the system (Wext) than the smoother fault. In both experiments, Wfric consumed the largest portion of the energy budget (50–100%), while Wint consumed smaller percentages (5–20%). Tracking the temporal variability of energy partitioning revealed how evolving fault architecture determined the energetic dominance of particular deformational processes, and so highlighted the importance of tracking energy partitioning through time.
dc.languageEN
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleThe evolving energy budget of experimental faults within continental crust: Insights from in situ dynamic X-ray microtomography
dc.typeJournal article
dc.creator.authorMcBeck, Jessica Ann
dc.creator.authorCordonnier, Benoit
dc.creator.authorMair, Karen
dc.creator.authorRenard, Francois
cristin.unitcode185,15,22,20
cristin.unitnameGEO Physics of Geological processes
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2
dc.identifier.cristin1723430
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Structural Geology&rft.volume=123&rft.spage=42&rft.date=2019
dc.identifier.jtitleJournal of Structural Geology
dc.identifier.volume123
dc.identifier.startpage42
dc.identifier.endpage53
dc.identifier.doihttps://doi.org/10.1016/j.jsg.2019.03.005
dc.identifier.urnURN:NBN:no-77650
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0191-8141
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/74536/2/2019_JSG_McBeck.pdf
dc.type.versionAcceptedVersion
dc.relation.projectNFR/250661


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International