Hide metadata

dc.date.accessioned2020-04-15T18:16:47Z
dc.date.available2020-11-27T23:46:07Z
dc.date.created2019-05-07T13:22:05Z
dc.date.issued2019
dc.identifier.citationMcBeck, Jessica Ann Mair, Karen Renard, Francois . Linking macroscopic failure with micromechanical processes in layered rocks: How layer orientation and roughness control macroscopic behavior. Tectonophysics. 2019, 750, 229-242
dc.identifier.urihttp://hdl.handle.net/10852/74533
dc.description.abstractTo constrain the impact of preexisting mechanical weaknesses on strain localization culminating in macroscopic shear failure, we simulate triaxial compression of layered sedimentary rock using three-dimensional discrete element method simulations. We develop a novel particle packing technique that builds layered rocks with preexisting weaknesses of varying orientations, roughness, and surface area available for slip. We quantify how the geomechanical behavior, characterized by internal friction coefficient, μ0, and failure strength, σF, vary as a function of layer orientation, θ, interface roughness, and total interface area. Failure of the simulated sedimentary rocks mirrors key observations from laboratory experiments on layered sedimentary rock, including minima σF and μ0 for layers oriented at 30° with respect to the maximum compressive stress, σ1, and maxima σF and μ0 for layers oriented near 0° and 90° to σ1. The largest changes in σF (66%) and μ0 (20%) occur in models with the smoothest interfaces and largest interface area. Within the parameter space tested, layer orientation exerts the most significant impact on σF and μ0. These simulations allow directly linking micromechanical processes observed within the models to macroscopic failure behavior. The spatial distributions of nucleating microfractures, and the rate and degree of strain localization onto preexisting weaknesses, rather than the host rock, are systematically linked to the distribution of failure strengths. Preexisting weakness orientation more strongly controls the degree and rate of strain localization than the imposed confining stress within the explored parameter space. Using the upper and lower limits of μ0 and σF obtained from the models, estimates of the Coulomb shear stress required for failure of intact rock within the upper seismogenic zone (7 km) indicates that a rotation of 30° of σ1 relative to the weakness orientation may reduce the shear stress required for failure by up to 100 MPa.
dc.languageEN
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleLinking macroscopic failure with micromechanical processes in layered rocks: How layer orientation and roughness control macroscopic behavior
dc.typeJournal article
dc.creator.authorMcBeck, Jessica Ann
dc.creator.authorMair, Karen
dc.creator.authorRenard, Francois
cristin.unitcode185,15,22,20
cristin.unitnameGEO Physics of Geological processes
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.cristin1696074
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Tectonophysics&rft.volume=750&rft.spage=229&rft.date=2019
dc.identifier.jtitleTectonophysics
dc.identifier.volume750
dc.identifier.startpage229
dc.identifier.endpage242
dc.identifier.doihttps://doi.org/10.1016/j.tecto.2018.11.016
dc.identifier.urnURN:NBN:no-77647
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0040-1951
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/74533/2/2019_Tectonophysics_McBeck.pdf
dc.type.versionAcceptedVersion
dc.relation.projectNFR/250661
dc.relation.projectNOTUR/NORSTORE/NN4557K


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International