Hide metadata

dc.date.accessioned2020-03-31T18:41:08Z
dc.date.available2020-03-31T18:41:08Z
dc.date.created2019-05-05T13:19:23Z
dc.date.issued2019
dc.identifier.citationFelszeghy, Szabolcs Viiri, Johanna Paterno, Jussi J. Hyttinen, Juha M.T. Koskela, Ali Chen, Mei Leinonen, Henri Tanila, Heikki Kivinen, Niko Koistinen, Arto Toropainen, Elisa Amadio, Marialaura Smedowski, Adrian Reinisalo, Mika Winiarczyk, Mateusz Mackiewicz, Jerzy Mutikainen, Maija Ruotsalainen, Anna-Kaisa Kettunen, Mikko Jokivarsi, Kimmo Sinha, Debasish Kinnunen, Kati Petrovski, Goran Blasiak, Janusz Bjørkøy, Geir Koskelainen, Ari Skottman, Heli Urtti, Arto Salminen, Antero Kannan, Ram Ferrington, Deborah A. Xu, Heping Levonen, Anna-Liisa Tavi, Pasi Kauppinen, Anu Kaarniranta, Kai . Loss of NRF-2 and PGC-1α genes leads to retinal pigment epithelium damage resembling dry age-related macular degeneration. Redox Biology. 2019, 20, 1-12
dc.identifier.urihttp://hdl.handle.net/10852/74328
dc.description.abstractAge-related macular degeneration (AMD) is a multi-factorial disease that is the leading cause of irreversible and severe vision loss in the developed countries. It has been suggested that the pathogenesis of dry AMD involves impaired protein degradation in retinal pigment epithelial cells (RPE). RPE cells are constantly exposed to oxidative stress that may lead to the accumulation of damaged cellular proteins, DNA and lipids and evoke tissue deterioration during the aging process. The ubiquitin-proteasome pathway and the lysosomal/autophagosomal pathway are the two major proteolytic systems in eukaryotic cells. NRF-2 (nuclear factor-erythroid 2-related factor-2) and PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1 alpha) are master transcription factors in the regulation of cellular detoxification. We investigated the role of NRF-2 and PGC-1α in the regulation of RPE cell structure and function by using global double knockout (dKO) mice. The NRF-2/PGC-1α dKO mice exhibited significant age-dependent RPE degeneration, accumulation of the oxidative stress marker, 4-HNE (4-hydroxynonenal), the endoplasmic reticulum stress markers GRP78 (glucose-regulated protein 78) and ATF4 (activating transcription factor 4), and damaged mitochondria. Moreover, levels of protein ubiquitination and autophagy markers p62/SQSTM1 (sequestosome 1), Beclin-1 and LC3B (microtubule associated protein 1 light chain 3 beta) were significantly increased together with the Iba-1 (ionized calcium binding adaptor molecule 1) mononuclear phagocyte marker and an enlargement of RPE size. These histopathological changes of RPE were accompanied by photoreceptor dysmorphology and vision loss as revealed by electroretinography. Consequently, these novel findings suggest that the NRF-2/PGC-1α dKO mouse is a valuable model for investigating the role of proteasomal and autophagy clearance in the RPE and in the development of dry AMD.
dc.languageEN
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleLoss of NRF-2 and PGC-1α genes leads to retinal pigment epithelium damage resembling dry age-related macular degeneration
dc.typeJournal article
dc.creator.authorFelszeghy, Szabolcs
dc.creator.authorViiri, Johanna
dc.creator.authorPaterno, Jussi J.
dc.creator.authorHyttinen, Juha M.T.
dc.creator.authorKoskela, Ali
dc.creator.authorChen, Mei
dc.creator.authorLeinonen, Henri
dc.creator.authorTanila, Heikki
dc.creator.authorKivinen, Niko
dc.creator.authorKoistinen, Arto
dc.creator.authorToropainen, Elisa
dc.creator.authorAmadio, Marialaura
dc.creator.authorSmedowski, Adrian
dc.creator.authorReinisalo, Mika
dc.creator.authorWiniarczyk, Mateusz
dc.creator.authorMackiewicz, Jerzy
dc.creator.authorMutikainen, Maija
dc.creator.authorRuotsalainen, Anna-Kaisa
dc.creator.authorKettunen, Mikko
dc.creator.authorJokivarsi, Kimmo
dc.creator.authorSinha, Debasish
dc.creator.authorKinnunen, Kati
dc.creator.authorPetrovski, Goran
dc.creator.authorBlasiak, Janusz
dc.creator.authorBjørkøy, Geir
dc.creator.authorKoskelainen, Ari
dc.creator.authorSkottman, Heli
dc.creator.authorUrtti, Arto
dc.creator.authorSalminen, Antero
dc.creator.authorKannan, Ram
dc.creator.authorFerrington, Deborah A.
dc.creator.authorXu, Heping
dc.creator.authorLevonen, Anna-Liisa
dc.creator.authorTavi, Pasi
dc.creator.authorKauppinen, Anu
dc.creator.authorKaarniranta, Kai
cristin.unitcode185,53,43,11
cristin.unitnameØyeavdelingen
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1695638
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Redox Biology&rft.volume=20&rft.spage=1&rft.date=2019
dc.identifier.jtitleRedox Biology
dc.identifier.volume20
dc.identifier.startpage1
dc.identifier.endpage12
dc.identifier.doihttps://doi.org/10.1016/j.redox.2018.09.011
dc.identifier.urnURN:NBN:no-77432
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2213-2317
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/74328/1/Felszeghy.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/223255


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International