Hide metadata

dc.date.accessioned2020-03-27T19:43:55Z
dc.date.available2020-03-27T19:43:55Z
dc.date.created2019-09-02T15:28:30Z
dc.date.issued2020
dc.identifier.citationEllefsen, Kai Olav Huizinga, Joost Tørresen, Jim . Guiding Neuroevolution with Structural Objectives. Evolutionary Computation. 2019, Early Access
dc.identifier.urihttp://hdl.handle.net/10852/74248
dc.description.abstractThe structure and performance of neural networks are intimately connected, and by use of evolutionary algorithms, neural network structures optimally adapted to a given task can be explored. Guiding such neuroevolution with additional objectives related to network structure has been shown to improve performance in some cases, especially when modular neural networks are beneficial. However, apart from objectives aiming to make networks more modular, such structural objectives have not been widely explored. We propose two new structural objectives and test their ability to guide evolving neural networks on two problems which can benefit from decomposition into subtasks. The first structural objective guides evolution to align neural networks with a user-recommended decomposition pattern. Intuitively, this should be a powerful guiding target for problems where human users can easily identify a structure. The second structural objective guides evolution towards a population with a high diversity in decomposition patterns. This results in exploration of many different ways to decompose a problem, allowing evolution to find good decompositions faster. Tests on our target problems reveal that both methods perform well on a problem with a very clear and decomposable structure. However, on a problem where the optimal decomposition is less obvious, the structural diversity objective is found to outcompete other structural objectives—and this technique can even increase performance on problems without any decomposable structure at all.
dc.languageEN
dc.titleGuiding Neuroevolution with Structural Objectives
dc.typeJournal article
dc.creator.authorEllefsen, Kai Olav
dc.creator.authorHuizinga, Joost
dc.creator.authorTørresen, Jim
cristin.unitcode185,15,5,42
cristin.unitnameForskningsgruppe for robotikk og intelligente systemer
cristin.ispublishedtrue
cristin.qualitycode2
dc.identifier.cristin1720691
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Evolutionary Computation&rft.volume=Early Access&rft.spage=&rft.date=2019
dc.identifier.jtitleEvolutionary Computation
dc.identifier.volume28
dc.identifier.issue1
dc.identifier.startpage115
dc.identifier.endpage140
dc.identifier.doihttps://doi.org/10.1162/evco_a_00250
dc.identifier.urnURN:NBN:no-77356
dc.type.documentTidsskriftartikkel
dc.source.issn1063-6560
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/74248/1/4-guiding_neuroevolution.pdf
dc.type.versionSubmittedVersion
dc.relation.projectNFR/240862
dc.relation.projectNFR/261645
dc.relation.projectNFR/262762


Files in this item

Appears in the following Collection

Hide metadata