Hide metadata

dc.date.accessioned2020-03-25T19:19:39Z
dc.date.available2020-03-25T19:19:39Z
dc.date.created2019-09-05T11:39:11Z
dc.date.issued2019
dc.identifier.citationGriffiths, Luke Dautriat, Jérémie Rodriguez, Ismael A Vera Iranpour, Kamran Sauvin, Guillaume Park, Joonsang Sarout, Joel Soldal, Magnus Grande, Lars Oye, Volker Dewhurst, David Mondol, MD Nazmul Haque Choi, Jung Chan . Inferring microseismic source mechanisms and in situ stresses during triaxial deformation of a North-Sea-analogue sandstone. Advances in Geosciences. 2019, 49
dc.identifier.urihttp://hdl.handle.net/10852/74205
dc.description.abstractMonitoring microseismic activity provides a window through which to observe reservoir deformation during hydrocarbon and geothermal energy production, or CO2 injection and storage. Specifically, microseismic monitoring may help constrain geomechanical models through an improved understanding of the location and geometry of faults, and the stress conditions local to them. Such techniques can be assessed in the laboratory, where fault geometries and stress conditions are well constrained. We carried out a triaxial test on a sample of Red Wildmoor sandstone, an analogue to a weak North Sea reservoir sandstone. The sample was coupled with an array of piezo-transducers, to measure ultrasonic wave velocities and monitor acoustic emissions (AE) – sample-scale microseismic activity associated with micro-cracking. We calculated the rate of AE, localised the AE events, and inferred their moment tensor from P-wave first motion polarities and amplitudes. We applied a biaxial decomposition to the resulting moment tensors of the high signal-to-noise ratio events, to provide nodal planes, slip vectors, and displacement vectors for each event. These attributes were then used to infer local stress directions and their relative magnitudes. Both the AE fracture mechanisms and the inferred stress conditions correspond to the sample-scale fracturing and applied stresses. This workflow, which considers fracture models relevant to the subsurface, can be applied to large-scale geoengineering applications to obtain fracture mechanisms and in-situ stresses from recorded microseismic data.
dc.description.abstractInferring microseismic source mechanisms and in situ stresses during triaxial deformation of a North-Sea-analogue sandstone
dc.languageEN
dc.publisherCopernicus Publications under license by EGU – European Geosciences Union GmbH
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleInferring microseismic source mechanisms and in situ stresses during triaxial deformation of a North-Sea-analogue sandstone
dc.typeJournal article
dc.creator.authorGriffiths, Luke
dc.creator.authorDautriat, Jérémie
dc.creator.authorRodriguez, Ismael A Vera
dc.creator.authorIranpour, Kamran
dc.creator.authorSauvin, Guillaume
dc.creator.authorPark, Joonsang
dc.creator.authorSarout, Joel
dc.creator.authorSoldal, Magnus
dc.creator.authorGrande, Lars
dc.creator.authorOye, Volker
dc.creator.authorDewhurst, David
dc.creator.authorMondol, MD Nazmul Haque
dc.creator.authorChoi, Jung Chan
cristin.unitcode185,15,22,50
cristin.unitnameSeksjon for geologi og geofysikk
cristin.ispublishedtrue
cristin.qualitycode1
dc.identifier.cristin1721856
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Advances in Geosciences&rft.volume=49&rft.spage=&rft.date=2019
dc.identifier.jtitleAdvances in Geosciences
dc.identifier.volume49
dc.identifier.startpage85
dc.identifier.endpage93
dc.identifier.doihttps://doi.org/10.5194/adgeo-49-85-2019
dc.identifier.urnURN:NBN:no-77281
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1680-7340
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/74205/1/Griffiths_etal%25282019%2529.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/268520


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International