Hide metadata

dc.date.accessioned2020-03-19T19:36:59Z
dc.date.available2020-03-19T19:36:59Z
dc.date.created2019-08-22T10:00:09Z
dc.date.issued2019
dc.identifier.citationChen, Rongzhen Zamulko, Sergii Huang, Dan Persson, Clas . Theoretical analyses of copper-based solar cell materials for the next generation of photovoltaics. Solar energy capture materials. 2019, 193-240 Royal Society of Chemistry
dc.identifier.urihttp://hdl.handle.net/10852/74083
dc.description.abstractThis chapter describes the state of the art in computer simulations in the context of the development of high-efficiency solar cells. It discusses how one analyses by theoretical means the structural, electronic, and optical properties of emerging copper-based chalcogenides, employing atomistic first-principles computational methods within density functional theory. The fundamental material characteristics of the compounds are analysed, and the optoelectronic performances are improved by alloying with isovalent elements. In order to develop inorganic photovoltaics based on an ultrathin, photon-absorbing film (i.e., with thickness d < 100 nm), the material should exhibit an optimised band gap energy, Eg, as well as have a very high absorption coefficient α(ω), especially for photon energies in the lower energy region of the absorption spectrum: Eg ≤ E < (Eg + 2 eV). To develop high-efficiency solar cells, we therefore suggest tailor making the materials to form direct-gap, multi-valley band edges, and energy bands with rather flat dispersions. These properties can typically be achieved by considering alloys with heavy elements that have relatively localised sp-like orbitals. With such tailored materials, we demonstrate that it is possible to reach a theoretical maximum efficiency as high as ηmax ≈ 30% for film thickness of d ≈ 50–100 nm. Such an approach is useful to support the search for new materials to drive innovation in solar technology in the future.
dc.languageEN
dc.publisherRoyal Society of Chemistry
dc.titleTheoretical analyses of copper-based solar cell materials for the next generation of photovoltaics
dc.typeChapter
dc.creator.authorChen, Rongzhen
dc.creator.authorZamulko, Sergii
dc.creator.authorHuang, Dan
dc.creator.authorPersson, Clas
cristin.unitcode185,15,17,20
cristin.unitnameSenter for Materialvitenskap og Nanoteknologi fysikk
cristin.ispublishedtrue
cristin.fulltextpreprint
dc.identifier.cristin1717908
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.btitle=Solar energy capture materials&rft.spage=193&rft.date=2019
dc.identifier.startpage193
dc.identifier.endpage240
dc.identifier.pagecount245
dc.identifier.doihttps://doi.org/10.1039/9781788013512
dc.identifier.urnURN:NBN:no-77209
dc.type.documentBokkapittel
dc.source.isbn978-1-78801-107-5
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/74083/1/chapt_subm.pdf
dc.type.versionSubmittedVersion
cristin.btitleSolar energy capture materials
dc.relation.projectNOTUR/NORSTORE/NN9180K
dc.relation.projectNFR/243642
dc.relation.projectNFR/221469
dc.relation.projectNFR/251131


Files in this item

Appears in the following Collection

Hide metadata