Hide metadata

dc.date.accessioned2020-03-04T19:27:15Z
dc.date.available2020-05-26T22:46:48Z
dc.date.created2018-08-01T11:08:41Z
dc.date.issued2018
dc.identifier.citationZeng, Qiang Chen, Hua Xu, Chong-Yu Jie, Meng-xuan Chen, Jie Guo, Sheng Lian Liu, Jie . The effect of rain gauge density and distribution on runoff simulation using a lumped hydrological modelling approach. Journal of Hydrology. 2018, 563, 106-122
dc.identifier.urihttp://hdl.handle.net/10852/73685
dc.description.abstractMost lumped hydrological models use areal average precipitation data as model input. Though weather-radar-based and satellite-based precipitation estimation methods have been proposed in recent years, the rain gauge is still the most widely used precipitation-measuring tool. Optimal selection of rain gauge number and location will improve the accuracy of areal average precipitation estimations with minimum cost. In this study, the impacts of rain gauge density and distribution on lumped hydrological modelling uncertainty with different catchment sizes are analysed. To this end, the performances of a lumped hydrological model, the Xinanjiang model, in a densely gauged river basin, the Xiangjiang River basin, and its sub-basins under different gauge density and distribution are compared. First, seven levels of rain gauge density are defined. For each density level, several samples of different rain gauge distributions are randomly selected. Then, the areal average precipitation of each sample is estimated and used as input to the Xinanjiang model. Finally, the model is calibrated using the shuffled complex evolution (SCE-UA) algorithm, and model uncertainty is evaluated via the Bayesian method. The results show that 1) imperfect precipitation inputs measured by a sparse and irregular rain gauge network will lead to substantial uncertainty in model parameter estimation and flood simulation; 2) the impacts of imperfect precipitation estimates on model efficiency can be reduced to some extent through the adjustment of model parameters; 3) modelling uncertainty is reduced by increasing the rain gauge density or optimizing the rain gauge distribution pattern; and 4) the improvement in lumped model efficiency is no longer significant when the rain gauge density exceeds a certain threshold, but a further increase in rain gauge density will reduce model parameter uncertainty and the width of the runoff confidence interval.
dc.languageEN
dc.publisherElsevier Science
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleThe effect of rain gauge density and distribution on runoff simulation using a lumped hydrological modelling approach
dc.typeJournal article
dc.creator.authorZeng, Qiang
dc.creator.authorChen, Hua
dc.creator.authorXu, Chong-Yu
dc.creator.authorJie, Meng-xuan
dc.creator.authorChen, Jie
dc.creator.authorGuo, Sheng Lian
dc.creator.authorLiu, Jie
cristin.unitcode185,15,22,0
cristin.unitnameInstitutt for geofag
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode2
dc.identifier.cristin1599306
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Hydrology&rft.volume=563&rft.spage=106&rft.date=2018
dc.identifier.jtitleJournal of Hydrology
dc.identifier.volume563
dc.identifier.startpage106
dc.identifier.endpage122
dc.identifier.doihttps://doi.org/10.1016/j.jhydrol.2018.05.058
dc.identifier.urnURN:NBN:no-76799
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0022-1694
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/73685/2/Zeng%2BQiang%2BHYDROL25555R1.pdf
dc.type.versionAcceptedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International