Hide metadata

dc.date.accessioned2020-02-27T16:17:57Z
dc.date.available2020-02-27T16:17:57Z
dc.date.created2019-05-23T11:25:45Z
dc.date.issued2019
dc.identifier.citationNarongsirikul, Sirikarn Mondol, Nazmul Haque Jahren, Jens . Acoustic and petrophysical properties of mechanically compacted overconsolidated sands: part 1 – experimental results. Geophysical Prospecting. 2019, 67, 804-824
dc.identifier.urihttp://hdl.handle.net/10852/73413
dc.description.abstractThis paper part one is set out to lay primary observations of experimental compaction measurements to form the basis for rock physics modelling in paper part two. P‐ and S‐wave velocities and corresponding petrophysical (porosity and density) properties of seven unconsolidated natural sands with different mineralogical compositions and textures are reported. The samples were compacted in a uniaxial strain configuration from 0.5 up to 30 MPa effective stresses. Each sand sample was subjected to three loading cycles to study the influence of stress reduction on acoustic velocities and rock physical properties with the key focus on simulating a complex burial history with periods of uplift. Results show significant differences in rock physical properties between normal compaction and overconsolidation (unloaded and reloaded). The differences observed for total porosity, density, and P‐ and S‐wave velocities are attributed to irrecoverable permanent deformation. Microtextural differences affect petrophysical, acoustic, elastic and mechanical properties, mostly during normal consolidation but are less significant during unloading and reloading. Different pre‐consolidation stress magnitudes, stress conditions (isotropic or uniaxial) and mineral compositions do not significantly affect the change in porosity and velocities during unloading as a similar steep velocity–porosity gradient is observed. The magnitude of change in the total porosity is low compared to the associated change in P‐ and S‐wave velocities during stress release. This can be explained by the different sensitivity of the porosity and acoustic properties (velocities) to the change in stress. Stress reduction during unloading yields maximum changes in the total porosity, P‐ and S‐wave velocities of 5%, 25%, and 50%, respectively. These proportions constitute the basis for the following empirical (approximation) correlations: Δϕ ∼ ±5 ΔVP and ΔVP ∼ ±2ΔVS. The patterns observed in the experiments are similar to well log data from the Barents Sea. Applications to rock physics modelling and reservoir monitoring are reported in a companion paper.
dc.languageEN
dc.publisherBlackwell Publishing
dc.titleAcoustic and petrophysical properties of mechanically compacted overconsolidated sands: part 1 – experimental results
dc.typeJournal article
dc.creator.authorNarongsirikul, Sirikarn
dc.creator.authorMondol, Nazmul Haque
dc.creator.authorJahren, Jens
cristin.unitcode185,15,22,50
cristin.unitnameSeksjon for geologi og geofysikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.cristin1699714
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Geophysical Prospecting&rft.volume=67&rft.spage=804&rft.date=2019
dc.identifier.jtitleGeophysical Prospecting
dc.identifier.volume67
dc.identifier.issue4
dc.identifier.startpage804
dc.identifier.endpage824
dc.identifier.doihttps://doi.org/10.1111/1365-2478.12744
dc.identifier.urnURN:NBN:no-76549
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0016-8025
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/73413/1/Narongsirikul_etal%2B%25282019%2529Postprint%2B2020-02-07.pdf
dc.type.versionAcceptedVersion


Files in this item

Appears in the following Collection

Hide metadata