Hide metadata

dc.date.accessioned2020-02-12T19:10:55Z
dc.date.available2020-02-12T19:10:55Z
dc.date.created2019-04-03T09:08:30Z
dc.date.issued2019
dc.identifier.citationOsnes, Andreas Nygård Vartdal, Magnus Omang, Marianne Gjestvold Reif, Bjørn Anders Pettersson . Computational analysis of shock-induced flow through stationary particle clouds. International Journal of Multiphase Flow. 2019, 114, 268-286
dc.identifier.urihttp://hdl.handle.net/10852/73042
dc.description.abstractWe investigate the shock-induced flow through random particle arrays using particle-resolved Large Eddy Simulations for different incident shock wave Mach numbers, particle volume fractions and particle sizes. We analyze trends in mean flow quantities and the unresolved terms in the volume averaged momentum equation, as we vary the three parameters. We find that the shock wave attenuation and certain mean flow trends can be predicted by the opacity of the particle cloud, which is a function of particle size and particle volume fraction. We show that the Reynolds stress field plays an important role in the momentum balance at the particle cloud edges, and therefore strongly affects the reflected shock wave strength. The Reynolds stress was found to be insensitive to particle size, but strongly dependent on particle volume fraction. It is in better agreement with results from simulations of flow through particle clouds at fixed mean slip Reynolds numbers in the incompressible regime, than with results from other shock wave particle cloud studies, which have utilized either inviscid or two-dimensional approaches. We propose an algebraic model for the streamwise Reynolds stress based on the observation that the separated flow regions are the primary contributions to the Reynolds stress.
dc.description.abstractComputational analysis of shock-induced flow through stationary particle clouds
dc.languageEN
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleComputational analysis of shock-induced flow through stationary particle clouds
dc.typeJournal article
dc.creator.authorOsnes, Andreas Nygård
dc.creator.authorVartdal, Magnus
dc.creator.authorOmang, Marianne Gjestvold
dc.creator.authorReif, Bjørn Anders Pettersson
cristin.unitcode185,15,30,30
cristin.unitnameSeksjon for autonome systemer og sensorteknologier
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.cristin1689881
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International Journal of Multiphase Flow&rft.volume=114&rft.spage=268&rft.date=2019
dc.identifier.jtitleInternational Journal of Multiphase Flow
dc.identifier.volume114
dc.identifier.startpage268
dc.identifier.endpage286
dc.identifier.doihttps://doi.org/10.1016/j.ijmultiphaseflow.2019.03.010
dc.identifier.urnURN:NBN:no-76154
dc.subject.nviVDP::Fysikk: 430VDP::Matematikk og naturvitenskap: 400
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0301-9322
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/73042/4/1-s2.0-S0301932219300278-main.pdf
dc.type.versionAcceptedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International