Hide metadata

dc.date.accessioned2020-02-05T19:47:41Z
dc.date.available2020-02-05T19:47:41Z
dc.date.created2019-02-05T14:27:28Z
dc.date.issued2018
dc.identifier.citationMcBeck, Jessica Ann Kobchenko, Maya Hall, Stephen Tudisco, Erika Cordonnier, Benoit Meakin, Paul Renard, Francois . Investigating the Onset of Strain Localization Within Anisotropic Shale Using Digital Volume Correlation of Time-Resolved X-Ray Microtomography Images. Journal of Geophysical Research - Solid Earth. 2018, 123(9), 7509-7528
dc.identifier.urihttp://hdl.handle.net/10852/72806
dc.description.abstractDigital volume correlation analysis of time‐resolved X‐ray microtomography scans acquired during in situ triaxial compression of Green River shale cores provided time series of 3‐D incremental strain fields that elucidated evolving deformation processes by quantifying microscopic strain localization. With these data, we investigated the impact of mechanical anisotropy on microscopic strain localization culminating in macroscopic shear failure. We conducted triaxial compression experiments with the maximum compressive stress, σ1, aligned perpendicular and parallel to lamination planes in order to investigate end‐member stress states that arise within sedimentary basins. When the preexisting laminations were perpendicular to σ1, a lamination‐parallel region with high axial compaction developed within the macroscopically linear deformation phase of the experiment and then thickened with increasing applied differential stress. Scanning electron microscopy images indicate that this axial compaction occurred within a lower density lamination and that more axial compaction occurred within the center of the core than near its sides. Boundary element method simulations suggest that this compacting volume promoted shear fracture development within the upper portion of the shale. When the laminations were parallel to σ1, lamination‐parallel dilation bands formed, thickened, and intensified in dilation. Population densities of the distributions of incremental shear strain, radial dilation, and axial contraction calculated by digital volume correlation analysis enabled quantification of the evolving overall impact of, and interplay between, these various deformation modes.en_US
dc.languageEN
dc.publisherAmerican Geopgysical Union (AGU)
dc.titleInvestigating the Onset of Strain Localization Within Anisotropic Shale Using Digital Volume Correlation of Time-Resolved X-Ray Microtomography Imagesen_US
dc.typeJournal articleen_US
dc.creator.authorMcBeck, Jessica Ann
dc.creator.authorKobchenko, Maya
dc.creator.authorHall, Stephen
dc.creator.authorTudisco, Erika
dc.creator.authorCordonnier, Benoit
dc.creator.authorMeakin, Paul
dc.creator.authorRenard, Francois
cristin.unitcode185,15,18,10
cristin.unitnameNJORD geofag - senter for studier av jordens fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1673682
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Geophysical Research - Solid Earth&rft.volume=123&rft.spage=7509&rft.date=2018
dc.identifier.jtitleJournal of Geophysical Research - Solid Earth
dc.identifier.volume123
dc.identifier.issue9
dc.identifier.startpage7509
dc.identifier.endpage7528
dc.identifier.doihttps://doi.org/10.1029/2018JB015676
dc.identifier.urnURN:NBN:no-75917
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn2169-9313
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/72806/1/McBeck_et_al-2018%2BJGR%2Bshale.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata