Hide metadata

dc.date.accessioned2020-01-15T19:09:47Z
dc.date.available2020-01-15T19:09:47Z
dc.date.created2018-09-11T10:40:27Z
dc.date.issued2018
dc.identifier.citationKiraly, Agnes Holt, Adam Funiciello, Francesca Faccenna, Claudio Capitanio, Fabio A. . Modeling Slab‐Slab Interactions: Dynamics of Outward Dipping Double‐Sided Subduction Systems. Geochemistry Geophysics Geosystems. 2018, 19(3), 693-714
dc.identifier.urihttp://hdl.handle.net/10852/72198
dc.description.abstractSlab‐slab interaction is a characteristic feature of tectonically complex areas. Outward dipping double‐sided subduction is one of these complex cases, which has several examples on Earth, most notably the Molucca Sea and Adriatic Sea. This study focuses on developing a framework for linking plate kinematics and slab interactions in an outward dipping subduction geometry. We used analog and numerical models to better understand the underlying subduction dynamics. Compared to a single subduction model, double‐sided subduction exhibits more time‐dependent and vigorous toroidal flow cells that are elongated (i.e., not circular). Because both the Molucca and Adriatic Sea exhibit an asymmetric subduction configuration, we also examine the role that asymmetry plays in the dynamics of outward dipping double‐sided subduction. We introduce asymmetry in two ways; with variable initial depths for the two slabs (“geometric” asymmetry), and with variable buoyancy within the subducting plate (“mechanical” asymmetry). Relative to the symmetric case, we probe how asymmetry affects the overall slab kinematics, whether asymmetric behavior intensifies or equilibrates as subduction proceeds. While initial geometric asymmetry disappears once the slabs are anchored to the 660 km discontinuity, the mechanical asymmetry can cause more permanent differences between the two subduction zones. In the most extreme case, the partly continental slab stops subducting due to the unequal slab pull force. The results show that the slab‐slab interaction is most effective when the two trenches are closer than 10–8 cm in the laboratory, which is 600–480 km when scaled to the Earth.
dc.languageEN
dc.publisherThe Geochemical Society
dc.titleModeling Slab‐Slab Interactions: Dynamics of Outward Dipping Double‐Sided Subduction Systems
dc.typeJournal article
dc.creator.authorKiraly, Agnes
dc.creator.authorHolt, Adam
dc.creator.authorFuniciello, Francesca
dc.creator.authorFaccenna, Claudio
dc.creator.authorCapitanio, Fabio A.
cristin.unitcode185,15,22,40
cristin.unitnameSenter for Jordens utvikling og dynamikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2
dc.identifier.cristin1608373
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Geochemistry Geophysics Geosystems&rft.volume=19&rft.spage=693&rft.date=2018
dc.identifier.jtitleGeochemistry Geophysics Geosystems
dc.identifier.volume19
dc.identifier.issue3
dc.identifier.startpage693
dc.identifier.endpage714
dc.identifier.doihttps://doi.org/10.1002/2017GC007199
dc.identifier.urnURN:NBN:no-75316
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1525-2027
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/72198/4/Kir-ly_et_al-2018-Geochemistry%2C_Geophysics%2C_Geosystems.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/223272


Files in this item

Appears in the following Collection

Hide metadata