Hide metadata

dc.date.accessioned2019-12-19T20:49:20Z
dc.date.available2019-12-19T20:49:20Z
dc.date.created2018-12-21T10:49:10Z
dc.date.issued2018
dc.identifier.citationStokkan, Therese Sørheim Haug, Halvard Tang, Chi Kwong Marstein, Erik Stensrud Gran, Jarle . Enhanced surface passivation of predictable quantum efficient detectors by silicon nitride and silicon oxynitride/silicon nitride stack. Journal of Applied Physics. 2018, 124(21)
dc.identifier.urihttp://hdl.handle.net/10852/71803
dc.description.abstractIn this paper, we investigate three different passivating films for use in predictable quantum efficient detectors: two monolayer films of SiNx with different compositions and one double-layer stack of SiNxOy capped with SiNx, all deposited on very high resistivity silicon substrates. In addition to the conventional characterization methods, we also utilize the novel method of photoluminescence imaging under applied bias (PL-V) and high voltage soaking to modulate the fixed charge density Qf in the layers. All films exhibit very good passivating properties after deposition and annealing, with the oxynitride stack providing the best passivation, resulting in an effective carrier lifetime close to 20 ms. This value is explained by a relatively high fixed charge density of Qf = 1.12 × 1012 cm−2 and low interface defect density (S0,n = 6.0 × 102 cm/s), giving a chemical passivation which is an order of magnitude better than the investigated nitrides. Both nitride films were readily charged by voltage soaking, increasing the effective carrier lifetime by about 20%. Based on the passivating properties, photodetector device simulations predict that self-induced photodiodes made with any of these passivation layers will have an internal quantum deficiency well below 1 ppm for selected wavelengths at room temperature, and all the investigated materials are thus good candidates for use as passivating layers in such photodiodes.
dc.languageEN
dc.publisherAmerican Institute of Physics (AIP)
dc.titleEnhanced surface passivation of predictable quantum efficient detectors by silicon nitride and silicon oxynitride/silicon nitride stack
dc.typeJournal article
dc.creator.authorStokkan, Therese Sørheim
dc.creator.authorHaug, Halvard
dc.creator.authorTang, Chi Kwong
dc.creator.authorMarstein, Erik Stensrud
dc.creator.authorGran, Jarle
cristin.unitcode185,15,17,20
cristin.unitnameSenter for Materialvitenskap og Nanoteknologi fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1646624
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Applied Physics&rft.volume=124&rft.spage=&rft.date=2018
dc.identifier.jtitleJournal of Applied Physics
dc.identifier.volume124
dc.identifier.issue21
dc.identifier.doihttps://doi.org/10.1063/1.5054696
dc.identifier.urnURN:NBN:no-74867
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0021-8979
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/71803/1/j_applied_physics_2018_Stokan_et_al_1.5054696.pdf
dc.type.versionPublishedVersion
cristin.articleid214502
dc.relation.projectNFR/242777


Files in this item

Appears in the following Collection

Hide metadata