Hide metadata

dc.date.accessioned2019-12-09T19:15:00Z
dc.date.available2019-12-09T19:15:00Z
dc.date.created2018-11-23T19:59:17Z
dc.date.issued2018
dc.identifier.citationBrydegaard, Mikkel Jansson, Samuel Schulz, Marcus Runemark, Anna . Can the narrow red bands of dragonflies be used to perceive wing interference patterns?. Ecology and Evolution. 2018, 8(11), 5369-5384
dc.identifier.urihttp://hdl.handle.net/10852/71446
dc.description.abstractDespite numerous studies of selection on position and number of spectral vision bands, explanations to the function of narrow spectral bands are lacking. We investigate dragonflies (Odonata), which have the narrowest spectral bands reported, in order to investigate what features these narrow spectral bands may be used to perceive. We address whether it is likely that narrow red bands can be used to identify conspecifics by the optical signature from wing interference patterns (WIPs). We investigate the optical signatures of Odonata wings using hyperspectral imaging, laser profiling, ellipsometry, polarimetric modulation spectroscopy, and laser radar experiments. Based on results, we estimate the prospects for Odonata perception of WIPs to identify conspecifics in the spectral, spatial, intensity, polarization, angular, and temporal domains. We find six lines of evidence consistent with an ability to perceive WIPs. First, the wing membrane thickness of the studied Odonata is 2.3 μm, coinciding with the maximal thickness perceivable by the reported bandwidth. Second, flat wings imply that WIPs persist from whole wings, which can be seen at a distance. Third, WIPs constitute a major brightness in the visual environment only second after the solar disk. Fourth, WIPs exhibit high degree of polarization and polarization vision coincides with frontal narrow red bands in Odonata. Fifth, the angular light incidence on the Odonata composite eye provides all prerequisites for direct assessment of the refractive index which is associated with age. Sixth, WIPs from conspecifics in flight make a significant contribution even to the fundamental wingbeat frequency within the flicker fusion bandwidth of Odonata vision. We conclude that it is likely that WIPs can be perceived by the narrow red bands found in some Odonata species and propose future behavioral and electrophysiological tests of this hypothesis.en_US
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleCan the narrow red bands of dragonflies be used to perceive wing interference patterns?en_US
dc.typeJournal articleen_US
dc.creator.authorBrydegaard, Mikkel
dc.creator.authorJansson, Samuel
dc.creator.authorSchulz, Marcus
dc.creator.authorRunemark, Anna
cristin.unitcode185,15,29,0
cristin.unitnameInstitutt for biovitenskap
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1634474
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Ecology and Evolution&rft.volume=8&rft.spage=5369&rft.date=2018
dc.identifier.jtitleEcology and Evolution
dc.identifier.volume8
dc.identifier.issue11
dc.identifier.startpage5369
dc.identifier.endpage5384
dc.identifier.doihttps://doi.org/10.1002/ece3.4054
dc.identifier.urnURN:NBN:no-74573
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn2045-7758
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/71446/2/Can%2Bthe%2Bnarrow%2Bred%2Bbands%2Bof%2Bdragonflies%2Bbe%2Bused-Brydegaard_et_al-2018-Ecology_and_Evolution.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International