Hide metadata

dc.date.accessioned2019-12-07T20:24:27Z
dc.date.available2019-12-07T20:24:27Z
dc.date.created2018-07-10T20:00:37Z
dc.date.issued2018
dc.identifier.citationBalaban, Gabriel Finsberg, Henrik Nicolay Funke, Simon Wolfgang Håland, Trine Synnøve Fink Hopp, Einar Sundnes, Joakim Wall, Samuel T Rognes, Marie Elisabeth . In vivo estimation of elastic heterogeneity in an infarcted human heart. Biomechanics and Modeling in Mechanobiology. 2018, 1-13
dc.identifier.urihttp://hdl.handle.net/10852/71370
dc.description.abstractIn myocardial infarction, muscle tissue of the heart is damaged as a result of ceased or severely impaired blood flow. Survivors have an increased risk of further complications, possibly leading to heart failure. Material properties play an important role in determining post-infarction outcome. Due to spatial variation in scarring, material properties can be expected to vary throughout the tissue of a heart after an infarction. In this study we propose a data assimilation technique that can efficiently estimate heterogeneous elastic material properties in a personalized model of cardiac mechanics. The proposed data assimilation is tested on a clinical dataset consisting of regional left ventricular strains and in vivo pressures during atrial systole from a human with a myocardial infarction. Good matches to regional strains are obtained, and simulated equi-biaxial tests are carried out to demonstrate regional heterogeneities in stress–strain relationships. A synthetic data test shows a good match of estimated versus ground truth material parameter fields in the presence of no to low levels of noise. This study is the first to apply adjoint-based data assimilation to the important problem of estimating cardiac elastic heterogeneities in 3-D from medical images.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleIn vivo estimation of elastic heterogeneity in an infarcted human heart
dc.typeJournal article
dc.creator.authorBalaban, Gabriel
dc.creator.authorFinsberg, Henrik Nicolay
dc.creator.authorFunke, Simon Wolfgang
dc.creator.authorHåland, Trine Synnøve Fink
dc.creator.authorHopp, Einar
dc.creator.authorSundnes, Joakim
dc.creator.authorWall, Samuel T
dc.creator.authorRognes, Marie Elisabeth
cristin.unitcode185,15,5,0
cristin.unitnameInstitutt for informatikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1596679
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Biomechanics and Modeling in Mechanobiology&rft.volume=&rft.spage=1&rft.date=2018
dc.identifier.jtitleBiomechanics and Modeling in Mechanobiology
dc.identifier.volume17
dc.identifier.issue5
dc.identifier.startpage1
dc.identifier.startpage1317
dc.identifier.endpage13
dc.identifier.endpage1329
dc.identifier.doihttps://doi.org/10.1007/s10237-018-1028-5
dc.identifier.urnURN:NBN:no-74492
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1617-7959
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/71370/2/BiomechandModelinMechs10237-018-1028-5.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International