Hide metadata

dc.date.accessioned2019-12-06T19:43:49Z
dc.date.available2020-06-27T22:46:09Z
dc.date.created2018-07-25T10:33:48Z
dc.date.issued2018
dc.identifier.citationBirenis, Domas Ogawa, Yuhei Matsunaga, Hisao Takakuwa, Osamu Yamabe, Junichiro Prytz, Øystein Thøgersen, Annett . Interpretation of hydrogen-assisted fatigue crack propagation in BCC iron based on dislocation structure evolution around the crack wake. Acta Materialia. 2018, 156, 245-253
dc.identifier.urihttp://hdl.handle.net/10852/71288
dc.description.abstractA new model for hydrogen-assisted fatigue crack growth (HAFCG) in BCC iron under a gaseous hydrogen environment has been established based on various methods of observation, i.e., electron backscatter diffraction (EBSD), electron channeling contrast imaging (ECCI) and transmission electron microscopy (TEM), to elucidate the precise mechanism of HAFCG. The FCG in gaseous hydrogen showed two distinguishing regimes corresponding to the unaccelerated regime at a relatively low stress intensity factor range, ΔK, and the accelerated regime at a relatively high ΔK. The fracture surface in the unaccelerated regime was covered by ductile transgranular and intergranular features, while mainly quasi-cleavage features were observed in the accelerated regime. The EBSD and ECCI results demonstrated considerably lower amounts of plastic deformation, i.e., less plasticity, around the crack path in the accelerated regime. The TEM results confirmed that the dislocation structure immediately beneath the crack in the accelerated regime showed significantly lower development and that the fracture surface in the quasi-cleavage regions was parallel to the {100} plane. These observations suggest that the HAFCG in pure iron may be attributed to “less plasticity” rather than “localized plasticity” around the crack tip.
dc.languageEN
dc.publisherPergamon
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleInterpretation of hydrogen-assisted fatigue crack propagation in BCC iron based on dislocation structure evolution around the crack wake
dc.typeJournal article
dc.creator.authorBirenis, Domas
dc.creator.authorOgawa, Yuhei
dc.creator.authorMatsunaga, Hisao
dc.creator.authorTakakuwa, Osamu
dc.creator.authorYamabe, Junichiro
dc.creator.authorPrytz, Øystein
dc.creator.authorThøgersen, Annett
cristin.unitcode185,15,4,40
cristin.unitnameStrukturfysikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2
dc.identifier.cristin1598567
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Acta Materialia&rft.volume=156&rft.spage=245&rft.date=2018
dc.identifier.jtitleActa Materialia
dc.identifier.volume156
dc.identifier.startpage245
dc.identifier.endpage253
dc.identifier.doihttps://doi.org/10.1016/j.actamat.2018.06.041
dc.identifier.urnURN:NBN:no-74393
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1359-6454
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/71288/2/Manu%2B2%2BRevised%2Bfinal.pdf
dc.type.versionAcceptedVersion
dc.relation.projectNORTEM/197405


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International