Hide metadata

dc.date.accessioned2019-12-05T19:33:45Z
dc.date.available2019-12-05T19:33:45Z
dc.date.created2018-11-22T20:00:43Z
dc.date.issued2018
dc.identifier.citationXiong, Lihua Yang, Han Zeng, Ling Xu, Chong-Yu . Evaluating consistency between the remotely sensed soil moisture and the hydrological model-simulated soil moisture in the Qujiang catchment of China. Water. 2018, 10(3), 1-27
dc.identifier.urihttp://hdl.handle.net/10852/71211
dc.description.abstractAccurate soil moisture estimation plays a crucial role in agricultural management and hydrological studies. Considering the scarcity of direct in-situ measurements, it is important to evaluate the consistency of soil moisture data acquired in indirect ways, including both satellite products and simulation values obtained via hydrological models. In this study, two types of high spatial-resolution remotely sensed values, namely the surface soil moisture (SSM) and the profile soil water index (SWI), are estimated from each of the ASCAT-A, ASCAT-B, SMAP and SMOS microwave satellites. They are compared with two groups of model-simulated daily soil moisture values, which are obtained by implementing the lumped Xinanjiang (XAJ) model and the DEM-based distributed hydrological model (DDRM) across the Qujiang catchment, located in southwest China. The results indicate that for each satellite product, SWI values always show closer agreement with model-simulated soil moisture values than SSM values, and SWI values estimated from ASCAT products perform best in terms of correlation coefficient with the model-simulated soil moisture, at around 0.8 on average, followed by the SMAP product, which shows a correlation coefficient of 0.48 on average, but the SMOS product shows poor performance. This evaluation of consistency provides useful information on their systematic differences and suggests subsequent studies to ensure their reconciliation in long-term records.
dc.languageEN
dc.publisherMDPI AG
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleEvaluating consistency between the remotely sensed soil moisture and the hydrological model-simulated soil moisture in the Qujiang catchment of China
dc.typeJournal article
dc.creator.authorXiong, Lihua
dc.creator.authorYang, Han
dc.creator.authorZeng, Ling
dc.creator.authorXu, Chong-Yu
cristin.unitcode185,15,22,60
cristin.unitnameSeksjon for naturgeografi og hydrologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1634009
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Water&rft.volume=10&rft.spage=1&rft.date=2018
dc.identifier.jtitleWater
dc.identifier.volume10
dc.identifier.issue3
dc.identifier.startpage1
dc.identifier.endpage27
dc.identifier.doihttps://doi.org/10.3390/w10030291
dc.identifier.urnURN:NBN:no-74343
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2073-4441
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/71211/1/water-10-00291.pdf
dc.type.versionPublishedVersion
cristin.articleid291


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International