Hide metadata

dc.date.accessioned2019-12-05T19:12:09Z
dc.date.available2019-12-05T19:12:09Z
dc.date.created2018-07-02T15:19:21Z
dc.date.issued2018
dc.identifier.citationKarset, Inger Helene H. Berntsen, Terje Koren Storelvmo, Trude Alterskjær, Kari Grini, Alf Oliviè, Dirk Jan Leo Kirkevåg, Alf Seland, Øyvind Iversen, Trond Schulz, Michael . Strong impacts on aerosol indirect effects from historical oxidant changes. Atmospheric Chemistry and Physics. 2018, 18(10), 7669-7690
dc.identifier.urihttp://hdl.handle.net/10852/71201
dc.description.abstractUncertainties in effective radiative forcings through aerosol–cloud interactions (ERFaci, also called aerosol indirect effects) contribute strongly to the uncertainty in the total preindustrial-to-present-day anthropogenic forcing. Some forcing estimates of the total aerosol indirect effect are so negative that they even offset the greenhouse gas forcing. This study highlights the role of oxidants in modeling of preindustrial-to-present-day aerosol indirect effects. We argue that the aerosol precursor gases should be exposed to oxidants of its era to get a more correct representation of secondary aerosol formation. Our model simulations show that the total aerosol indirect effect changes from −1.32 to −1.07 W m−2 when the precursor gases in the preindustrial simulation are exposed to preindustrial instead of present-day oxidants. This happens because of a brightening of the clouds in the preindustrial simulation, mainly due to large changes in the nitrate radical (NO3). The weaker oxidative power of the preindustrial atmosphere extends the lifetime of the precursor gases, enabling them to be transported higher up in the atmosphere and towards more remote areas where the susceptibility of the cloud albedo to aerosol changes is high. The oxidation changes also shift the importance of different chemical reactions and produce more condensate, thus increasing the size of the aerosols and making it easier for them to activate as cloud condensation nuclei.
dc.languageEN
dc.publisherCopernicus
dc.relation.ispartofKarset, Inger Helene Hafsahl (2020) Enhancing the confidence in estimates of effective radiative forcing by aerosol through improved global modelling. Doctoral thesis http://hdl.handle.net/10852/72779
dc.relation.urihttp://hdl.handle.net/10852/72779
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleStrong impacts on aerosol indirect effects from historical oxidant changes
dc.typeJournal article
dc.creator.authorKarset, Inger Helene H.
dc.creator.authorBerntsen, Terje Koren
dc.creator.authorStorelvmo, Trude
dc.creator.authorAlterskjær, Kari
dc.creator.authorGrini, Alf
dc.creator.authorOliviè, Dirk Jan Leo
dc.creator.authorKirkevåg, Alf
dc.creator.authorSeland, Øyvind
dc.creator.authorIversen, Trond
dc.creator.authorSchulz, Michael
cristin.unitcode185,15,22,70
cristin.unitnameMeteorologi og oseanografi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1595259
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Atmospheric Chemistry and Physics&rft.volume=18&rft.spage=7669&rft.date=2018
dc.identifier.jtitleAtmospheric Chemistry and Physics
dc.identifier.volume18
dc.identifier.issue10
dc.identifier.startpage7669
dc.identifier.endpage7690
dc.identifier.doihttps://doi.org/10.5194/acp-18-7669-2018
dc.identifier.urnURN:NBN:no-74364
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1680-7316
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/71201/1/acp-18-7669-2018.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International