Hide metadata

dc.date.accessioned2019-08-22T12:26:00Z
dc.date.available2019-08-22T12:26:00Z
dc.date.created2018-08-03T13:59:23Z
dc.date.issued2018
dc.identifier.citationKolli, Hima Bindu De Nicola, Antonio Bore, Sigbjørn Løland Schäfer, Ken Diezemann, Gregor Gauss, Jürgen Kawakatsu, Toshihiro Lu, Zhong-Yuan Zhu, You-Liang Milano, Giuseppe Cascella, Michele . Hybrid particle-field molecular dynamics simulations of charged amphiphiles in an aqueous environment. Journal of Chemical Theory and Computation. 2018, 14(9), 4928-4937
dc.identifier.urihttp://hdl.handle.net/10852/69423
dc.description.abstractWe develop and test specific coarse-grained models for charged amphiphilic systems such as palmitoyloleoylphosphatidylglycerol (POPG) lipid bilayer and sodium dodecyl sulfate (SDS) surfactant in an aqueous environment, to verify the ability of the hybrid particle-field method to provide a realistic description of polyelectrolytes. According to the hybrid approach, the intramolecular interactions are treated by a standard molecular Hamiltonian, and the nonelectrostatic intermolecular forces are described by density fields. Electrostatics is introduced as an additional external field obtained by a modified particle-mesh Ewald procedure, as recently proposed [Zhu et al. Phys. Chem. Chem. Phys. 2016, 18, 9799]. Our results show that, upon proper calibration of key parameters, electrostatic forces can be correctly reproduced. Molecular dynamics simulations indicate that the methodology is robust with respect to the choice of the relative dielectric constant, yielding the same correct qualitative behavior for a broad range of values. In particular, our methodology reproduces well the organization of the POPG bilayer, as well as the SDS concentration-dependent change in the morphology of the micelles from spherical to microtubular aggregates. The inclusion of explicit electrostatics with good accuracy and low computational cost paves the way for a significant extension of the hybrid particle-field method to biological systems, where the polyelectrolyte component plays a fundamental role for both structural and dynamical molecular properties. This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Chemical Theory and Computation, copyright © American Chemical Society after peer review and technical editing by the publisher.
dc.languageEN
dc.publisherAmerican Chemical Society (ACS)
dc.titleHybrid particle-field molecular dynamics simulations of charged amphiphiles in an aqueous environment
dc.typeJournal article
dc.creator.authorKolli, Hima Bindu
dc.creator.authorDe Nicola, Antonio
dc.creator.authorBore, Sigbjørn Løland
dc.creator.authorSchäfer, Ken
dc.creator.authorDiezemann, Gregor
dc.creator.authorGauss, Jürgen
dc.creator.authorKawakatsu, Toshihiro
dc.creator.authorLu, Zhong-Yuan
dc.creator.authorZhu, You-Liang
dc.creator.authorMilano, Giuseppe
dc.creator.authorCascella, Michele
cristin.unitcode185,15,12,59
cristin.unitnameTeoretisk kjemi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.cristin1675120
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Chemical Theory and Computation&rft.volume=14&rft.spage=1120&rft.date=2018
dc.identifier.jtitleJournal of Chemical Theory and Computation
dc.identifier.volume14
dc.identifier.issue9
dc.identifier.startpage4928
dc.identifier.endpage4937
dc.identifier.doihttp://dx.doi.org/10.1021/acs.jctc.8b00466
dc.identifier.urnURN:NBN:no-72401
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1549-9618
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/69423/2/MS_hPF_electrostatics_R1.pdf
dc.type.versionAcceptedVersion


Files in this item

Appears in the following Collection

Hide metadata