Hide metadata

dc.date.accessioned2019-08-02T05:24:07Z
dc.date.available2019-08-02T05:24:07Z
dc.date.created2019-04-23T14:07:10Z
dc.date.issued2019
dc.identifier.citationRøyne, Anja Phua, Yi Jing Le, Simone Balzer Eikjeland, Ina Grosås Josefsen, Kjell Domaas Markussen, Sidsel Myhr, Anders Throne-Holst, Harald Sikorski, Pawel Wentzel, Alexander . Towards a low CO2 emission building material employing bacterial metabolism (1/2): The bacterial system and prototype production. PLoS ONE. 2019, 14(4)
dc.identifier.urihttp://hdl.handle.net/10852/68974
dc.description.abstractThe production of concrete for construction purposes is a major source of anthropogenic CO2 emissions. One promising avenue towards a more sustainable construction industry is to make use of naturally occurring mineral-microbe interactions, such as microbial-induced carbonate precipitation (MICP), to produce solid materials. In this paper, we present a new process where calcium carbonate in the form of powdered limestone is transformed to a binder material (termed BioZEment) through microbial dissolution and recrystallization. For the dissolution step, a suitable bacterial strain, closely related to Bacillus pumilus, was isolated from soil near a limestone quarry. We show that this strain produces organic acids from glucose, inducing the dissolution of calcium carbonate in an aqueous slurry of powdered limestone. In the second step, the dissolved limestone solution is used as the calcium source for MICP in sand packed syringe moulds. The amounts of acid produced and calcium carbonate dissolved are shown to depend on the amount of available oxygen as well as the degree of mixing. Precipitation is induced through the pH increase caused by the hydrolysis of urea, mediated by the enzyme urease, which is produced in situ by the bacterium Sporosarcina pasteurii DSM33. The degree of successful consolidation of sand by BioZEment was found to depend on both the amount of urea and the amount of glucose available in the dissolution reaction.
dc.languageEN
dc.publisherPublic Library of Science (PLoS)
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleTowards a low CO2 emission building material employing bacterial metabolism (1/2): The bacterial system and prototype production
dc.typeJournal article
dc.creator.authorRøyne, Anja
dc.creator.authorPhua, Yi Jing
dc.creator.authorLe, Simone Balzer
dc.creator.authorEikjeland, Ina Grosås
dc.creator.authorJosefsen, Kjell Domaas
dc.creator.authorMarkussen, Sidsel
dc.creator.authorMyhr, Anders
dc.creator.authorThrone-Holst, Harald
dc.creator.authorSikorski, Pawel
dc.creator.authorWentzel, Alexander
cristin.unitcode185,15,4,10
cristin.unitnameKondenserte fasers fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1693482
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=PLoS ONE&rft.volume=14&rft.spage=&rft.date=2019
dc.identifier.jtitlePLoS ONE
dc.identifier.volume14
dc.identifier.issue4
dc.identifier.pagecount24
dc.identifier.doihttps://doi.org/10.1371/journal.pone.0212990
dc.identifier.urnURN:NBN:no-72125
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1932-6203
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/68974/2/2_1_journal.pone.0212990.pdf
dc.type.versionPublishedVersion
cristin.articleide0212990
dc.relation.projectNFR/238849


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International