Hide metadata

dc.date.accessioned2019-06-19T05:38:18Z
dc.date.available2019-06-19T05:38:18Z
dc.date.created2018-10-02T15:40:51Z
dc.date.issued2018
dc.identifier.citationNess, Torbjørn V Remme, Michiel W.H. Einevoll, Gaute . h-type membrane current shapes the local field potential from populations of pyramidal neurons. Journal of Neuroscience. 2018, 38(26), 6011-6024
dc.identifier.urihttp://hdl.handle.net/10852/68407
dc.description.abstractIn cortex, the local field potential (LFP) is thought to mainly stem from correlated synaptic input to populations of geometrically aligned neurons. Computer models of single cortical pyramidal neurons showed that subthreshold voltage-dependent membrane conductances can also shape the LFP signal, in particular the hyperpolarization-activated cation current (Ih; h-type). This ion channel is prominent in various types of pyramidal neurons, typically showing an increasing density gradient along the apical dendrites. Here, we investigate how Ih affects the LFP generated by a model of a population of cortical pyramidal neurons. We find that the LFP from populations of neurons that receive uncorrelated synaptic input can be well predicted by the LFP from single neurons. In this case, when input impinges on the distal dendrites, where most h-type channels are located, a strong resonance in the LFP was measured near the soma, whereas the opposite configuration does not reveal an Ih contribution to the LFP. Introducing correlations in the synaptic inputs to the pyramidal cells strongly amplifies the LFP, while maintaining the differential effects of Ih for distal dendritic versus perisomatic input. Previous theoretical work showed that input correlations do not amplify LFP power when neurons receive synaptic input uniformly across the cell. We find that this crucially depends on the membrane conductance distribution: the asymmetric distribution of Ih results in a strong amplification of the LFP when synaptic inputs to the cell population are correlated. In conclusion, we find that the h-type current is particularly suited to shape the LFP signal in cortical populations.
dc.languageEN
dc.titleh-type membrane current shapes the local field potential from populations of pyramidal neurons
dc.typeJournal article
dc.creator.authorNess, Torbjørn V
dc.creator.authorRemme, Michiel W.H.
dc.creator.authorEinevoll, Gaute
cristin.unitcode185,15,4,10
cristin.unitnameKondenserte fasers fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1617303
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Neuroscience&rft.volume=38&rft.spage=6011&rft.date=2018
dc.identifier.jtitleJournal of Neuroscience
dc.identifier.volume38
dc.identifier.issue26
dc.identifier.startpage6011
dc.identifier.endpage6024
dc.identifier.doihttp://dx.doi.org/10.1523/JNEUROSCI.3278-17.2018
dc.identifier.urnURN:NBN:no-71587
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0270-6474
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/68407/1/6011.full-2.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata