Hide metadata

dc.date.accessioned2019-05-27T16:59:59Z
dc.date.available2019-05-27T16:59:59Z
dc.date.created2018-10-14T22:39:13Z
dc.date.issued2018
dc.identifier.citationBuccino, Alessio Paolo Kordovan, Michael Ness, Torbjørn V Merkt, Benjamin Häfliger, Philipp Fyhn, Marianne Cauwenberghs, Gert Rotter, Stefan Einevoll, Gaute . Combining biophysical modeling and deep learning for multielectrode array neuron localization and classification. Journal of Neurophysiology. 2018, 120(3), 1212-1232
dc.identifier.urihttp://hdl.handle.net/10852/67999
dc.description.abstractNeural circuits typically consist of many different types of neurons, and one faces a challenge in disentangling their individual contributions in measured neural activity. Classification of cells into inhibitory and excitatory neurons and localization of neurons on the basis of extracellular recordings are frequently employed procedures. Current approaches, however, need a lot of human intervention, which makes them slow, biased, and unreliable. In light of recent advances in deep learning techniques and exploiting the availability of neuron models with quasi-realistic three-dimensional morphology and physiological properties, we present a framework for automatized and objective classification and localization of cells based on the spatiotemporal profiles of the extracellular action potentials recorded by multielectrode arrays. We train convolutional neural networks on simulated signals from a large set of cell models and show that our framework can predict the position of neurons with high accuracy, more precisely than current state-of-the-art methods. Our method is also able to classify whether a neuron is excitatory or inhibitory with very high accuracy, substantially improving on commonly used clustering techniques. Furthermore, our new method seems to have the potential to separate certain subtypes of excitatory and inhibitory neurons. The possibility of automatically localizing and classifying all neurons recorded with large high-density extracellular electrodes contributes to a more accurate and more reliable mapping of neural circuits.en_US
dc.languageEN
dc.relation.ispartofBuccino, Alessio Paolo (2020) A computationally-assisted approach to extracellular neural electrophysiology with multi-electrode arrays. Doctoral thesis http://hdl.handle.net/10852/72480
dc.relation.urihttp://hdl.handle.net/10852/72480
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.en_US
dc.titleCombining biophysical modeling and deep learning for multielectrode array neuron localization and classificationen_US
dc.typeJournal articleen_US
dc.creator.authorBuccino, Alessio Paolo
dc.creator.authorKordovan, Michael
dc.creator.authorNess, Torbjørn V
dc.creator.authorMerkt, Benjamin
dc.creator.authorHäfliger, Philipp
dc.creator.authorFyhn, Marianne
dc.creator.authorCauwenberghs, Gert
dc.creator.authorRotter, Stefan
dc.creator.authorEinevoll, Gaute
cristin.unitcode185,15,5,40
cristin.unitnameForskningsgruppen for nanoelektronikksystemer
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1620268
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Neurophysiology&rft.volume=120&rft.spage=1212&rft.date=2018
dc.identifier.jtitleJournal of Neurophysiology
dc.identifier.volume120
dc.identifier.issue3
dc.identifier.startpage1212
dc.identifier.endpage1232
dc.identifier.doihttp://dx.doi.org/10.1152/jn.00210.2018
dc.identifier.urnURN:NBN:no-71167
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn0022-3077
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/67999/1/JournalofNeurophys2018.00210.pdf
dc.type.versionPublishedVersion
dc.relation.projectEC/H2020/720270


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International