Hide metadata

dc.date.accessioned2019-04-03T13:10:40Z
dc.date.available2019-04-03T13:10:40Z
dc.date.created2018-07-27T14:24:19Z
dc.date.issued2018
dc.identifier.citationLiese, Susanne Netz, Roland R. . Quantitative Prediction of Multivalent Ligand-Receptor Binding Affinities for Influenza, Cholera, and Anthrax Inhibition. ACS Nano. 2018, 12(5), 4140-4147
dc.identifier.urihttp://hdl.handle.net/10852/67514
dc.description.abstractMultivalency achieves strong, yet reversible binding by the simultaneous formation of multiple weak bonds. It is a key interaction principle in biology and promising for the synthesis of high-affinity inhibitors of pathogens. We present a molecular model for the binding affinity of synthetic multivalent ligands onto multivalent receptors consisting of n receptor units arranged on a regular polygon. Ligands consist of a geometrically matching rigid polygonal core to which monovalent ligand units are attached via flexible linker polymers, closely mimicking existing experimental designs. The calculated binding affinities quantitatively agree with experimental studies for cholera toxin (n = 5) and anthrax receptor (n = 7) and allow to predict optimal core size and optimal linker length. Maximal binding affinity is achieved for a core that matches the receptor size and for linkers that have an equilibrium end-to-end distance that is slightly longer than the geometric separation between ligand core and receptor sites. Linkers that are longer than optimal are greatly preferable compared to shorter linkers. The angular steric restriction between ligand unit and linker polymer is shown to be a key parameter. We construct an enhancement diagram that quantifies the multivalent binding affinity compared to monovalent ligands. We conclude that multivalent ligands against influenza viral hemagglutinin (n = 3), cholera toxin (n = 5), and anthrax receptor (n = 7) can outperform monovalent ligands only for a monovalent ligand affinity that exceeds a core-size dependent threshold value. Thus, multivalent drug design needs to balance core size, linker length, as well as monovalent ligand unit affinity.en_US
dc.languageEN
dc.titleQuantitative Prediction of Multivalent Ligand-Receptor Binding Affinities for Influenza, Cholera, and Anthrax Inhibitionen_US
dc.typeJournal articleen_US
dc.creator.authorLiese, Susanne
dc.creator.authorNetz, Roland R.
cristin.unitcode185,15,13,15
cristin.unitnameMekanikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.cristin1598845
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ACS Nano&rft.volume=12&rft.spage=4140&rft.date=2018
dc.identifier.jtitleACS Nano
dc.identifier.volume12
dc.identifier.issue5
dc.identifier.startpage4140
dc.identifier.endpage4147
dc.identifier.doihttp://dx.doi.org/10.1021/acsnano.7b08479
dc.identifier.urnURN:NBN:no-70687
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn1936-0851
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/67514/1/multivalent_main.pdf
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/67514/2/multivalent_Supporting%2Binformation.pdf
dc.type.versionAcceptedVersion


Files in this item

Appears in the following Collection

Hide metadata