Hide metadata

dc.date.accessioned2019-03-28T11:59:02Z
dc.date.available2019-03-28T11:59:02Z
dc.date.created2018-09-23T09:56:11Z
dc.date.issued2018
dc.identifier.citationEngedal, Nikolai Žerovnik, Eva Rudov, Alexander Galli, Francesco Olivieri, Fabiola Procopio, Antonio Domenico Rippo, Maria Rita Monsurrò, Vladia Betti, Michele Albertini, Maria Cristina . From Oxidative Stress Damage to Pathways, Networks, and Autophagy via MicroRNAs. Oxidative Medicine and Cellular Longevity. 2018, 2018, 4968321
dc.identifier.urihttp://hdl.handle.net/10852/67467
dc.description.abstractOxidative stress can alter the expression level of many microRNAs (miRNAs), but how these changes are integrated and related to oxidative stress responses is poorly understood. In this article, we addressed this question by using in silico tools. We reviewed the literature for miRNAs whose expression is altered upon oxidative stress damage and used them in combination with various databases and software to predict common gene targets of oxidative stress-modulated miRNAs and affected pathways. Furthermore, we identified miRNAs that simultaneously target the predicted oxidative stress-modulated miRNA gene targets. This generated a list of novel candidate miRNAs potentially involved in oxidative stress responses. By literature search and grouping of pathways and cellular responses, we could classify these candidate miRNAs and their targets into a larger scheme related to oxidative stress responses. To further exemplify the potential of our approach in free radical research, we used our explorative tools in combination with ingenuity pathway analysis to successfully identify new candidate miRNAs involved in the ubiquitination process, a master regulator of cellular responses to oxidative stress and proteostasis. Lastly, we demonstrate that our approach may also be useful to identify novel candidate connections between oxidative stress-related miRNAs and autophagy. In summary, our results indicate novel and important aspects with regard to the integrated biological roles of oxidative stress-modulated miRNAs and demonstrate how this type of in silico approach can be useful as a starting point to generate hypotheses and guide further research on the interrelation between miRNA-based gene regulation, oxidative stress signaling pathways, and autophagy.en_US
dc.languageEN
dc.publisherHindawi
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleFrom Oxidative Stress Damage to Pathways, Networks, and Autophagy via MicroRNAsen_US
dc.typeJournal articleen_US
dc.creator.authorEngedal, Nikolai
dc.creator.authorŽerovnik, Eva
dc.creator.authorRudov, Alexander
dc.creator.authorGalli, Francesco
dc.creator.authorOlivieri, Fabiola
dc.creator.authorProcopio, Antonio Domenico
dc.creator.authorRippo, Maria Rita
dc.creator.authorMonsurrò, Vladia
dc.creator.authorBetti, Michele
dc.creator.authorAlbertini, Maria Cristina
cristin.unitcode185,57,11,0
cristin.unitnameMills/Engedal Group - Prostate Cancer
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1612468
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Oxidative Medicine and Cellular Longevity&rft.volume=2018&rft.spage=4968321&rft.date=2018
dc.identifier.jtitleOxidative Medicine and Cellular Longevity
dc.identifier.volume2018
dc.identifier.startpage4968321
dc.identifier.doihttp://dx.doi.org/10.1155/2018/4968321
dc.identifier.urnURN:NBN:no-70641
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn1942-0900
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/67467/1/4968321.pdf
dc.type.versionPublishedVersion
cristin.articleid4968321
dc.relation.projectNFR/187615


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International