Hide metadata

dc.date.accessioned2019-02-18T13:33:13Z
dc.date.available2019-02-18T13:33:13Z
dc.date.created2018-12-06T19:31:41Z
dc.date.issued2018
dc.identifier.citationSolbrå, Andreas Våvang Bergersen, Aslak Wigdahl van den Brink, Jonas Malthe-Sørenssen, Anders Einevoll, Gaute Halnes, Geir . A Kirchhoff-Nernst-Planck framework for modeling large scale extracellular electrodiffusion surrounding morphologically detailed neurons. PloS Computational Biology. 2018, 14(10), 1-26
dc.identifier.urihttp://hdl.handle.net/10852/66601
dc.description.abstractMany pathological conditions, such as seizures, stroke, and spreading depression, are associated with substantial changes in ion concentrations in the extracellular space (ECS) of the brain. An understanding of the mechanisms that govern ECS concentration dynamics may be a prerequisite for understanding such pathologies. To estimate the transport of ions due to electrodiffusive effects, one must keep track of both the ion concentrations and the electric potential simultaneously in the relevant regions of the brain. Although this is currently unfeasible experimentally, it is in principle achievable with computational models based on biophysical principles and constraints. Previous computational models of extracellular ion-concentration dynamics have required extensive computing power, and therefore have been limited to either phenomena on very small spatiotemporal scales (micrometers and milliseconds), or simplified and idealized 1-dimensional (1-D) transport processes on a larger scale. Here, we present the 3-D Kirchhoff-Nernst-Planck (KNP) framework, tailored to explore electrodiffusive effects on large spatiotemporal scales. By assuming electroneutrality, the KNP-framework circumvents charge-relaxation processes on the spatiotemporal scales of nanometers and nanoseconds, and makes it feasible to run simulations on the spatiotemporal scales of millimeters and seconds on a standard desktop computer. In the present work, we use the 3-D KNP framework to simulate the dynamics of ion concentrations and the electrical potential surrounding a morphologically detailed pyramidal cell. In addition to elucidating the single neuron contribution to electrodiffusive effects in the ECS, the simulation demonstrates the efficiency of the 3-D KNP framework. We envision that future applications of the framework to more complex and biologically realistic systems will be useful in exploring pathological conditions associated with large concentration variations in the ECS.en_US
dc.languageEN
dc.publisherPublic Library of Science (PLoS)
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleA Kirchhoff-Nernst-Planck framework for modeling large scale extracellular electrodiffusion surrounding morphologically detailed neuronsen_US
dc.typeJournal articleen_US
dc.creator.authorSolbrå, Andreas Våvang
dc.creator.authorBergersen, Aslak Wigdahl
dc.creator.authorvan den Brink, Jonas
dc.creator.authorMalthe-Sørenssen, Anders
dc.creator.authorEinevoll, Gaute
dc.creator.authorHalnes, Geir
cristin.unitcode185,15,4,10
cristin.unitnameKondenserte fasers fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1640058
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=PloS Computational Biology&rft.volume=14&rft.spage=1&rft.date=2018
dc.identifier.jtitlePloS Computational Biology
dc.identifier.volume14
dc.identifier.issue10
dc.identifier.startpage1
dc.identifier.endpage26
dc.identifier.doihttp://dx.doi.org/10.1371/journal.pcbi.1006510
dc.identifier.urnURN:NBN:no-69805
dc.type.documentTidsskriftartikkelen_US
dc.type.peerreviewedPeer reviewed
dc.source.issn1553-734X
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/66601/1/A%2BKirchhoff-Nernst-Planck%2Bframework%2B-journal.pcbi.1006510.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International